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Macroeconomics and                  
National Income 

COURSE INTRODUCTION 

Econometrics is an interface between economics, mathematics and statistics. It is mainly concerned with the 
empirical estimation of economic theory. The present course provides a comprehensive introduction to basic 
econometric concepts and techniques. The course is divided into five blocks comprising 14 Units.  

Block 1 titled, Econometric Theory: Fundamentals, comprises three units. Unit 1 is introductory in 
nature. It defines econometrics and lists the steps we follow in an econometric study. Unit 2 provides an 
overview of the concepts frequently used in econometrics. In Unit 3 we define the concept and procedure of 
hypothesis testing. 

Block 2 is titled, Regression Models: Two Variables Case. It consists of three Units. Unit 4 begins with 
the estimation procedure of simple regression model by ordinary least squares (OLS) method. It also 
describes the properties of OLS estimators and goodness of fit of regression models. Unit 5 continues with 
the simple regression model and describes the procedure of testing of hypothesis. In this context it explains 
the procedure of forecasting with regression models. Unit 6 extends the simple regression models in terms of 
log-linear models and changing the measurement units of the variables in a regression model. 

Block 3 titled, Multiple Regression Models, considers cases where there are more than one explanatory 
variable. There are three Units in this Block. Unit 7 deals with estimation of multiple regression models. 
Unit 8 deals with hypothesis testing in the case of multiple regression models. Unit 9 looks into structural 
stability of regression models and includes dummy variables as explanatory variables in multiple regression 
models. 

Block 4 deals with Treatment of Violations of Assumptions. Unit 10 addresses the issue of 
multicollinearity. It outlines the consequences, detection and remedial measures of multicollinearity. Unit 11 
deals with the issue of heteroscedasticity – its consequences, detection and remedial measures. Unit 12 deals 
with another important problem in multiple regression models, i.e., autocorrelation. It discusses the 
consequences, detection and remedial measures of autocorrelation.  

Block 5 is titled, Econometric Model Specification and Diagnostic Testing. There are two Units in this 

Block. Unit 13 deals with model selection criteria. In this Unit we discuss issues such as the exclusion of 

relevant variables and inclusion of irrelevant variables. The subject matter of Unit 14 is tests for 

specification errors. In this context it gives an outline of Akaike Information Criterion (AIC), Schwarz 

Information Criterion (SIC), and  Mallows’ Criterion. 
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UNIT 1 INTRODUCTION TO ECONOMETRICS * 

Structure 

1.0  Objectives 

1.1  Introduction 

1.2  Meaning of Econometrics 

1.3  Economics and Econometrics 

1.4  Methodology of Econometrics 

1.5  Association and Causation 

1.6  Let Us Sum Up 

1.7  Answers/ Hints to Check Your Progress Exercises 

1.0  OBJECTIVES 
After going through this unit, you will be able to 

 explain the significance of econometrics in the field of economics; 

 distinguish between econometrics, mathematical economics and economic 
statistics; 

 describe the steps to be followed in an econometric study; and 

 distinguish between association and causation. 

1.1  INTRODUCTION 

Econometrics connects the real world to the existing economic theories. 
Econometrics is based on the development of statistical methods for testing 
economic relationships and various economic theories. Econometrics helps us in 
two ways so far as relationship among variables is concerned: (i) explaining the 
past relationship among the variables, and (ii) forecasting the value of one 
variable on the basis of other variables.  

Econometrics is an interface between economics, mathematics and statistics. It is 
mainly concerned with the empirical estimation of economic theories. In a broad 
sense we can say that it is a branch of social science that combines the tools of 
mathematics and statistical inferences, and these tools are applied to analyse 
economic phenomena. Econometrics uses regression technique which establishes 
an association or relationship between various variables. You should note that 
such relationships do not imply causation. (i.e., cause and effect relationship). 
The notion of causation has to originate from some theory of economics. 
 
*Dr. Pooja Sharma, Assistant Professor, Daulat Ram College, University of Delhi 
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1.2  MEANING OF ECONOMETRICS  

As mentioned earlier, econometrics deals with ‘economic measurement’. It can 
be defined as a stream of social science which uses techniques of mathematics, 
statistical inference and economic theory applied to analyze any economic 
phenomenon. It deals with applications of mathematical statistics to economic 
data. The objective is to provide empirical support to the economic models 
constructed with the help of mathematical relationship and therefore obtain 
numerical results. Thus econometrics makes use of economic theory, 
mathematical economics, and economic statistics.  

Econometrics hence becomes a platform for interaction of economic theory, 
(microeconomics or macroeconomics) using sophisticated mathematical tools in 
the form of mathematical equations and economic statistics, that is, data. 
Economic statistics is developed by collection, processing and presentation of 
data.  

The central concern of mathematical economics is to express economic theory in 
mathematical forms or equations. These equations are finally are expressed in the 
form of models. You should note that mathematical economics does not evaluate 
the measurability or empirical verification of theory.  

Economic statistics is primarily concerned with collection, processing and 
presentation of economic data in the form of charts, diagrams and tables. These 
data could be on microeconomic variables pertaining to households and firms or 
it could pertain to macroeconomic variables such as GDP, employment, prices, 
etc. Data for econometric models could be primary data or secondary data. An 
economic statistician usually limits himself/ herself to tabulation and processing 
of data.  

Econometrics is mainly interested in empirical verification of economic theories. 
An econometrician would build models and test economic theories. In 
mathematical economics the relationship is deterministic. For example,  

𝑌௜ = 𝑎 + 𝑏𝑋௜        …(1.1) 

In (1.1) above, Y is the explained variable 

X is the explanatory variable 

a and b are parameters.  

The nature of relationship in econometrics, on the other hand, is stochastic. We 
add a stochastic error variable 𝑢௜ to equation (1.1). For example, 

𝑌௜ = 𝑎 + 𝑏𝑋௜ + 𝑢௜       …(1.2) 
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We will discuss further in Unit 4 on stochastic relationship among variables. In 
econometrics we generally require special methods due to the unique nature of 
economic data since such data are not generated under controlled experiments. 
The aim of econometrics is to bridge the gap between economic theory and actual 
measurement simply using the technique of statistical inference. 

Thus, you should note three prominent features of econometrics. First, 
econometrics deals with quantitative analysis of economic relationships. Second, 
it is based on economic theory and logic. Third, it requires appropriate estimation 
methods to draw inferences. Thus, if the relationship is not expressed in 
quantitative terms we cannot apply econometric tools. Further, the variables are 
related according to some theory or logic; otherwise it will be similar to spurious 
correlation that you studied in statistics.  

1.3  ECONOMICS AND ECONOMETIRCS 

In economic theory the statements could be qualitative in nature. On the other 
hand, as discussed above, econometrics is a composition of mathematical 
economics, economic statistics and mathematical statistics. Let us take an 
example. The law of demand states that ceteris paribus (i.e., other things 
remaining the same) a rise in price of a commodity is expected to decrease the 
quantity demanded of that commodity. Therefore, economic theory predicts a 
negative or inverse relationship between price and quantity demanded of a 
commodity.  

The law of demand does not provide any numerical measure of the strength of 
relationship between the two variables namely, price and quantity demanded of 
the commodity. It fails to answer the question that by how much the quantity will 
go up or down as a result of a certain change in price of commodity.  

Econometrics provides empirical content to most economic theories. The real 
application of economics in the applied world includes forecasting various 
crucial economic variables such as sales, interest rates, money supply, price 
elasticity, etc. 

The role of an economist is of great significance for an economy when it comes 
to understand how the variables would behave over a period of time or how these 
variables are connected to each other. An economist may be required to assess 
the impact of a proposed price increase on quantity demanded. For example, the 
impact of increase in price of electricity can be estimated by an econometrician 
and the electricity board may increase in price accordingly.  
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Check Your Progress 1 
1) Bring out the differences between econometrics, mathematical economics 

 and statistics. 

 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................  

2) Bring out the prominent features of econometrics. 

 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 ....................................................................................................................... 

1.4  METHODOLOGY OF ECONOMETRICS  
In econometrics we generally come across several types of economic issues. 
These issues could be from any branch of economics such as microeconomics, 
macroeconomics, public economics, international trade, etc. These also could be 
from any of the sectors of the economy such as agriculture, industry and services. 
The problem at hand could be different. However, there certain common steps to 
be followed in an econometric study. These steps are as follows: 

1. Construction of a statement of theory or hypothesis 

2. Specification of mathematical model of the theory 

3. Specification of statistical or econometric model 

4. Obtaining requisite data 

5. Estimation of the parameters of econometric model 

6. Testing of hypothesis 

7. Forecasting or prediction 

8. Interpretation of results  

These eight steps need to be elaborated further. Let us consider an example so 
that we can comprehend the issues. As you know from introductory 
macroeconomics, consumption expenditure depends upon income of households. 
Let us see how an econometric study can be carried out on the above relationship.  

Step 1: Construction of a Statement of Theory or Hypothesis 

The relationship between consumption and income is complex in nature. There 
are several factors that that influence consumption expenditure of a household 
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such as size of family, education level, health status of family members, place of 
stay (rural/urban), etc. In a simple model, however, the Keynesian consumption 
function establishes the relationship between consumption expenditure and 
household income. There are two concepts used by Keynes: average propensity 
to consume (APC), and marginal propensity to consume (MPC). According to 
Keynes the APC has a tendency to decline as income level increases. We can 
take the above statement as a hypothesis. Recall that hypothesis is based on 
certain theory or logic. 

Step 2: Specification of Mathematical Model of the Theory 

The consumption function takes the following form: 

𝐶௜ = 𝐶଴ + 𝑐𝑌௜         ...(1.3) 

The variables C and Y represent consumption expenditure and income 
respectively. Note that 𝐶଴  is autonomous consumption, which is the bare 
minimum needed for survival. Even if income of a household is zero, 
consumption will be 𝐶଴ . We note that for APC to decline, the parameters of 
equation (1.3) should fulfil the following two conditions:  𝐶଴ > 0 and 0 < 𝑐 < 1. 
These two conditions will help us in formulation of hypothesis in mathematical 
form.  

Step 3: Specification of Statistical or Econometric Model 

The consumption income relationship specified in equation (1.3) is exact in 
nature.  If we plot the graph for equation (1.4) we will obtain a straight line. As 
mentioned earlier, the nature of relationship in econometrics is stochastic. Let us 
consider two households with the same level of income. Their consumption 
expenditure would be different due to certain factors other than income (such as 
health status of family members). In order to incorporate such factors we include 
another variable, 𝑢௜, in our model. The variable 𝑢௜ has to meet certain conditions 
(to be discussed in Unit 4). Thus the econometric specification of the 
consumption function would be as follows: 

𝐶௜ = 𝐶଴ + 𝑐𝑌௜ + 𝑢௜        ...(1.4) 

Step 4: Obtaining Requisite Data 

Data can be obtained from primary sources or secondary sources. You should 
refer to Unit 1 of the course BECC 107: Statistical methods for Economics for 
details on primary data and secondary data. In that Unit we have discussed the 
procedure of conducting sample survey and the important sources of secondary 
data. 

For estimation of our econometric model given at equation (1.4) we need data on 
two variables, viz., income (Y) and consumption expenditure (C). As you know, 
income and expenditure are flow variables. Thus we have to specify a time 
period for these variables. For convenience from measurement point of view, we 
can take monthly income and monthly expenditure. Second, we have to define 
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what constitutes a household – who all are members of a household and who all 
are not included in the household. Third, we have to decide on the nature of data 
we collect.  

As you know, four types of data are available. (i) time series, (ii) cross- sectional, 
(iii) pooled-data, and (iii) panel data.  

(i) Time Series 

Time series data are collected on a variable regularly over a period of 
time. There are some variables on which data is available on a daily basis 
(e.g., SENSEX and NIFTY). In the case of some other variables, it is 
available on monthly basis (e.g., consumer price index), on a quarterly 
basis (e.g., GDP) or on an annual basis (e.g., fiscal deficit).  

(ii) Cross-Sectional Data 

Cross-sectional data refers to data on several variables at a point of time. 
For example through a sample survey we can collect household data on 
expenditure, income, saving, debt, etc. Remember that time series data 
focuses on the same variable over a period of time while cross-sectional 
data focuses on several variables at the same point of time. Census data is 
an example of cross-sectional data.   

(iii) Pooled Data  

In the pooled data we have elements of both the time series and cross- 
sectional data. It is a time series of cross-sections. The observations in 
each cross section may not refer to the same unit. Let us consider an 
example. The census data in India is collected decennially. The number of 
households in each census however differs. Such data can be pooled to 
analyse the shifts in population characteristics over time. You can think of 
several other examples of pooled data. Examples could be employment 
and unemployment surveys, workforce participation rates, human 
development index, etc.  

(iv) Panel Data 

It is a special type of pooled data. Here observations are taken on the 
same sample units at multiple points of time. Suppose we want to analyse 
the variability of returns across shares in the stock market. We can take a 
sample of 50 public limited companies and observe their net asset value 
(NAV) daily for the month of August 2021. Thus we get 31 cross sections 
(since the month August has 31 days) of 50 firms. This constitutes a panel 
data. We call it a ‘balanced panel’ if all observations (for time period 1 to 
t; and for sample units 1 to n) are available. We call it an ‘unbalanced 
panel’ if some observations are missing.    
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Step 5: Estimation of the Parameters of the Econometric Model 

We have discussed about sampling procedure, statistical estimation and testing of 
hypothesis in Block 4 of BECC 107. You need a thorough understanding of those 
concepts. Remember that in econometric estimation, the number of equations is 
more than the number of parameters. In order to estimate such models we need 
certain estimation methods. As you will come to know in subsequent Units of 
this course, there are quite a few estimation methods. You have been introduced 
to the least squares method in Unit 5 of the course BECC 107: Statistical 
Methods for Economics. There are certain econometric software available for 
estimation purpose. You will learn about econometric software in the course 
BECE 142: Applied Econometrics.  

Step 6: Testing of Hypothesis 

Once you obtain the estimates of the parameters, there is a need for test of the 
hypothesis. As you know, in a sampling distribution of an estimator, the estimate 
varies across sample. The estimate that you have obtained could be a matter of 
chance, and the parameter may be quite different from the estimate obtained. We 
need to confirm whether the difference between the parameter and the estimate 
really exists or it is a matter of sampling fluctuation.  

For the consumption function (1.4), we should apply one sided t-test for testing 
of the condition 𝐶଴ > 0 . For the marginal propensity to consume we should 
apply two-sided t-test 𝐻଴ ∶ 𝑐 = 0. For testing both the parameters together we 
should apply F-test.  

There is a need to check for the correct specification of the model. Two issues are 
important here: (i) how many explanatory variables should be there in the 
regression model, and (ii) what is the functional form of the model.  

The consumption function (see equation (1.4)) is a case of two-variable regress 
model. There is one explained variable and one explanatory variable in the 
model. If we include more number of explanatory variables (such as education, 
type of residential area, etc.) it becomes a multiple linear regression model.  The 
functional form again could be linear or non-linear. 

Step 7: Forecasting or Prediction 

The estimated model can be used for forecasting or prediction. We have the 
actual value of the dependent variable. On the basis of the estimated regression 
model, we obtain the predicted value of the dependent variable. The discrepancy 
between the two is the prediction error. This prediction error is required to be as 
small as possible. 

Step 8: Interpretation of Results  

There is a need for correct interpretation of the estimates. In later Units of this 
course we will discuss issues such as model specification and interpretation of 
the result. The estimated model can be used for policy recommendation also.  
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1.5  ASSOCIATION AND CAUSATION  
As you know from ‘BECC 107: Statistical Methods for Economics’ correlation 
implies association between two variables. Technically we can find out the 
correlation coefficient between any two variables (say the number of students 
visiting IGNOU library and the number of road accidents in Delhi). In some 
cases we find the correlation coefficients to be high also. Such relationship 
between variables however leads to spurious correlation. If we take two such 
variables (where correlation coefficient is high) and carry out a regression 
analysis we will find the estimates to be statistically significant. Such regression 
lines are meaningless. Thus regression analysis deals with the association or 
dependence of one variable on the other. It does not imply ‘causation’ however. 
The notion of causation has to come from existing theories in economics. 
Therefore a statistical relationship can only be statistically strong or suggestive. 
Unless causality is established between the variables the purpose of testing the 
economic theory would not make any sense. Most of the economic theories test 
the hypothesis whether one variable has a causal effect on the other. 

Thus logic or economic theory is very important in regression analysis. We 
should not run a regression without establishing the logic for the relationship 
between the variables. Let us look into the case of the law of demand. While 
analysing consumer demand, we need to understand the effect of changing price 
of the good on the quantity demanded holding the other factors such as income, 
price of other goods, tastes and preferences of individuals unchanged. However, 
if the other factors are not held fixed, then it would be impossible to know the 
causal effect of price change on quantity demanded.  

Check Your Progress 2 

1)  Explain the steps you would follow in an econometric study. 
 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 ....................................................................................................................... 

 ....................................................................................................................... 

2)  Assume that you have to carry out an econometric study on Keynesian 

 consumption function. Write down the steps you would follow.

 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 ....................................................................................................................... 

 ....................................................................................................................... 
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3) What do you understand by cause and effect relationship? How is it 
different from association?  

 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................  

1.6  LET US SUM UP 
In this Unit we dealt with the significance of econometrics in the field of 
economics. Econometrics connects the real world with theory. It helps us to 
ascertain the validity of theory.  

Behind every econometric model there should be certain logic. The relationship 
between variables should come from certain economic theory or logic. Mere 
estimation of a regression model may give up meaningless results. 

In this Unit we described the steps of carrying out econometric analysis. There 
are eight steps that we should follow while conducting an econometric study.   

1.7  ANSERS TO CHECK YOUR PORGRESS 
EXERCISES  

Check Your Progress 1 

1) In Section 1.2 we have shown that econometrics and interface between 
economics, statistics and mathematical economics. Elaborate on that.  

2) There are three prominent features of econometrics. First, econometrics deals 
with quantitative analysis of economic relationships. Second, it is based on 
economic theory and logic. Third, it requires appropriate estimation methods 
to draw inferences. 

Check Your Progress 2 

1) You should explain the eight steps mentioned in Section 1.4. 

2)   You should follow the eight steps given in Section 1.4. Your answer may 
include the following:  

(i) Statement of the theory:   0< MPC<1 

(ii) Mathematical specification of the model: C = βଵ + β2 Y, 0< βଶ <1 

(iii) Econometric specification the model: C = βଵ+ β2 Y + u 

(iv) Collection of Data: Secondary data from RBI Handbook of Statistics 

(v) Parameter Estimation:    𝐶ప෡ = −184.08 + 0.7164𝑌௜  

(vi) Hypothesis Test:          βଵ > 0 or βଶ > 0  

(vii) Prediction: what is the value of C, given the value of Y? 
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3)  Regression analysis deals with the association or dependence of one 
variable on the other. It does not imply causation. The notion of causation 
has to come from outside statistics. It could be some existing theory in 
economics. Therefore a statistical relationship can only be statistically 
strong or suggestive. Most of the economic theories test the hypothesis 
whether one variable has a causal effect on the other. Regression per se is 
all about association between two or more variables; this association might 
be suggestive. Unless causality is established between the variables the 
purpose of testing the economic theory would not make any sense. 



 

 

UNIT 2 OVERVIEW OF STATISTICAL 
CONCEPTS  

Structure 

2.0  Objectives 

2.1  Introduction 

2.2   Meaning of Statistical Inference 

2.3  Central Limit Theorem 

2.4   Normal Distribution  

2.5  Chi-Square Distribution 

2.6  The t-Distribution 

2.7  The F-Distribution 

2.8  Estimation of Parameters 
 2.8.1  Point Estimation 

 2.8.2  Interval Estimation 

2.9  Properties of a Good Estimator 
 2.9.1   Linearity 

2.9.2 Unbiasedness 
2.9.3 Minimum Variance 
2.9.4 Efficiency 
2.9.5 Best Linear Unbiased Estimator 
2.9.6 Consistency 

2.10  Let Us Sum Up 

2.11 Answers/Hints to check Your Progress Exercises 

2.0  OBJECTIVES 
After going through this unit, you will be able to 

 explain the concept and significance of probability distribution;  

 identify various types of probability distributions; 

 describe the properties of various probability distributions such as normal, t, 
F and chi-square;  

 explain the process of estimation of parameters and 

 describe the properties of a good estimator. 

                                                
 Dr. Pooja Sharma, Assistant Professor, Daulat Ram College, University of Delhi  
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Econometric Theory: 
Fundamentals 2.1  INTRODUCTION 

Statistical concepts and estimation methods hold crucial significance in 
understanding the tools of econometrics. Therefore, you should be able to define 
various concepts and distinguish between them. The essence of econometrics is 
based on empirical analysis which deals with data. In fact, the tools of 
econometric analysis emerge from statistical methods.  

Statistical concepts guide us to make judgement in the presence of uncertainty. 
Statistics provides the platform for data collection methods which becomes the 
basis for carrying out econometric analysis. Econometricians need to work with 
large population, which becomes a challenge. Therefore, there is a need to select 
appropriate sample and draw appropriate inferences based on probability 
distributions. Econometrics calls for a strong understanding of statistical concepts 
which help economists to choose the right sample and infer correctly from the 
chosen sample.  

The population is a collection of items, events or people. It is difficult to examine 
every element in the population. Therefore it makes sense in taking a subset of 
the population and examining it. This subset of population is called a ‘sample’ 
which is further used to draw inferences. If the sample is random and large 
enough, the information collected from the sample can be used for making 
inference about the population. 

Any experiment which gives random outcomes is referred to as random 
experiment. A variable which takes values which are outcome of random process 
is called a random variable. Thus, for a random variable each outcome is 
associated with certain probability of occurrence.  

Random variables are discrete random variables when they take finite values. If 
the random variable assumes infinite number of values between any two pints, it 
is called a continuous random variable. Random variables have a probability 
distribution. If the random variable is discrete then the probability function 
associated with it is called ‘probability distribution function’. If the random 
variable is continuous, then the probability function is referred to as ‘probability 
density function’. Random variables can have variety of distribution functions 
depending on their probabilities. Some of the commonly used distribution 
functions are described in this Unit.  

2.2  STATISTICAL INFERENCE  
In BECC 107 we have discussed the procedure of statistical inference in detail 
(You should go through Units 13 and 14 of BECC 107). Statistical inference is 
the method of drawing conclusions about the population characteristics on the 
basis of information contained in a sample drawn from the population. 
Remember that population mean is not known to us, but we know the sample 
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mean. In statistical inference we are interested in answering two types of 
questions. First, what would be the value of the population mean? The answer 
lies in making an informed guess about the population mean. This aspect of 
statistical inference is called ‘estimation’. The second question pertains to certain 
assertion made about the population mean. Suppose a manufacturer of electric 
bulbs claims that the mean life of electric bulbs is equal to 2000 hours. On the 
basis of the sample information, can we say that the assertion is not correct? This 
aspect of statistical inference is called hypothesis testing. Thus statistical 
inference deals with two issues: (i) estimation, and (ii) hypothesis testing. We 
discuss about estimation of parameters in the present Unit. Hypothesis testing 
will be discussed in Unit 3.  

If expected Price-Earning Ratio of 28 companies is 23.25, then this sample 
average can be used as an estimate of the population average of stocks. As you 
know, the sample average (or, sample mean) is denoted by X . This sample mean 
can be inferred as the expected value of X, which is the population mean. This 
process of generalizing from the sample value ( X ) to the population value E(X) 
is the essence of statistical inference. 

Statistical inference aims at understanding the characteristics of population from 
the sample. These population characteristics are the ‘parameters’ of the 
population and the characteristics of the sample are the ‘statistics’. The method of 
determining and computing population parameter using the sample is called 
estimation. 

2.3  CENTRAL LIMIT THEOREM  
When the functions of random variables are independent and identically 
distributed then as the sample size increases, the sample mean tends to be 
normally distributed around the population mean and the standard deviation 
reduces as sample size ‘n’ increases. 

If X 1, X2, X3, ……. and Xn are independent and identically distributed with 
mean µ and standard deviation 𝜎, then sample mean (𝑋ത) is given by  

𝑋ത =  (௑భା ௑మା ……ା ௑೙)
௡

        ...(2.1)  

The central limit theorem implies that the expected sample mean and standard 
deviation (SD) would converge as follows: 

E (𝑋ത) = µ and SD (𝑋ത) = ఙ
√௡

       ... (2.2) 

The Central Limit Theorem (CLT) states that 
௑തି ఓ

഑
√೙

 → N (0, 1) as n →  ∞      ... (2.3) 
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మ

௡
). In other words, the sample mean can be 

approximated with a normal random variable with mean 𝜇 and standard deviation 
ఙమ

௡
. We discuss certain important probability distribution functions below. 

2.4  NORMAL DISTRIBUTION  
Normal distribution (also called z-distribution) is a continuous probability 
distribution function. This function is very useful because of Central Limit 
Theorem. It implies that averages of samples of observations of random variables 
independently drawn from independent distributions converge in distribution to 
the normal. It becomes normally distributed when the number of observations is 
sufficiently large. The normal distribution is also called the bell curve (see Fig. 
2.1). The probability density function (pdf) of normal distribution is  

𝑓( 𝑥 | 𝜇, σଶ ) =  ଵ
√ଶπσమ  eି  (౮ష μ)మ

మσమ       ... (2.4) 

where, 𝜇 is the expectation of distribution or mean 

σ is the standard deviation, and σଶ is the variance. 

Some of the important properties of normal distribution are: 

a) The normal distribution curve is bell-shaped. 

b) The normal curve is symmetrical about the mean µ. 

c) The total area under the curve is equal to 1. 

d) The area of the curve is completely described by its mean and standard 
deviation. 

 

 

Fig. 2.1: Normal Probability Distribution 
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Standard Normal Distribution: N ~ N (0,1) 

It is a normal distribution with mean zero (𝜇 =  0) and unit variance (σଶ  = 1), 
then the probability distribution function is given by  

𝑓( 𝑥 | 0, 1 ) =  ଵ
√ଶπ

 eି   ౮
మ

మ         ... (2.5)  

All the properties of the normal distribution mentioned above are applicable in 
the case of standard normal distribution.  

Check Your Progress 1 

1) Assume that X is normally distributed with mean 𝜇 = 30 and standard 
deviation 𝜎 = 4. Find P(X < 40).  

 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 ....................................................................................................................... 

 .......................................................................................................................

 ....................................................................................................................... 

2) Bring out the important properties of normal probability distribution. 

 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 ....................................................................................................................... 

 ....................................................................................................................... 

3) The life of an electronic bulb produced by a company follows normal 
distribution with mean of 12 months and standard deviation of 2 months. 
Find out the probability that a bulb produced by the company will last  
a) less than 7 months 

b) between 7 and 12 months 

.......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 ....................................................................................................................... 

 ....................................................................................................................... 
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Suppose X is
𝑧 = ௑ିఓ

ఙ
  is a 

i.e.,  𝑧ଶ = ቀଡ଼ି
ఙ

degree of freedom

It is clear that
will lie between
Again, since,
close to zero.
near zero. 

Generalizing 
normal variables,

is said to be a

2.2 given below
degree of freedom.

The chi-square
distributions. 

Unlike standard
shape with sample

SQUARE DISTRIBUTION 

is a normal variable with mean 𝜇  and standard
 standard normal variable, i.e., 𝑧~N(0,1). If we

ቀ ିஜ
ఙ

ቁ
ଶ

, then 𝑧ଶ  is said to be distributed as a 

freedom and expressed as ଵ
ଶ. 

that since ଵ
ଶ is a squared term; for z laying between

between 0 and +∞ (because a squared term cannot take
since, z has a mean equal to zero, most of the values
zero. As a result, the probability density of ଵ

ଶ variable

 the result mentioned above, if z1, z2, ..., .zk are independent
variables, then the variable 

𝑧 = ෍ 𝑧ଵ
ଶ

௞௜

௜ୀଵ

 

a ଶ variable with k  degrees of freedom and is 

below shows the probability curves for ଶ  variables
freedom. 

Fig. 2.2: Chi-Square Probability Curves

square distribution is one of the most widely
s. The area under the chi-square probability curve

standard normal distribution, the distribution of chi
sample size. In the case of small samples, the distribution

standard deviation 𝜎 , then 
we take the square of z, 

ଶ  variable with one 

between −∞ and + ∞,  ଵ
ଶ 

take negative values). 
values taken by z will be 

variable will be maximum 

independent standard 

 denoted by 2
k . Fig. 

variables with different 

 

Curves 

widely used probability 
curve is equal to 1.  

chi-square changes its 
distribution is skewed to 



 

 

the right but it becomes symmetric as the
the chi-square distribution are positive.  

Properties of Chi-square distribution 

1. The mean of the chi-square distribution
of freedom (k).  

2. The variance of the chi-square
number of degrees of freedom: σ

3. When the degrees of freedom are
value of Y occurs when 2 = k – 

4.  As the degree of freedom increases,
normal distribution. 

2.5 THE t- DISTRIBUTION
The t-distribution is also called the student’s
the English statistician W S Gosset under
the family of continuous probability distributions.
the sample size is small and population 
where population parameters, i.e.,  𝜇  and
using sample statistics. The t-distribution
standard normal distribution (z). The height
sample size (see Fig. 2.3). As n approaches
standard normal distribution.  

 

               Fig 2.3: Student’s-

 If z1 is a standard normal variate, i.e., 𝑧
variable that follows the chi-square distribution

𝑧ଶ~ 2
k , then the variable 

the sample size increases. All the values of 
 

 

distribution is equal to the number of degrees 

square distribution is equal to two times the 
σଶ = 2k 

are greater than or equal to 2, the maximum 
 2. 

increases, the chi-square curve approaches a 

ISTRIBUTION 
student’s t-distribution. It was introduced by 
under the penname ‘Student’. It belongs to 
distributions. The t-distribution is applicable 

 standard deviation is unknown. The cases 
and 𝜎  are not known and are estimated 

distribution is symmetric as in the case of the 
height of the t-distribution depends on the 

approaches ∞ , the t-distribution approaches the 

 

-t Probability Curves 

𝑧ଵ~𝑁(0,1)  and zଶ  is another independent 
distribution with k degrees of freedom, i.e.,  
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ඥ(௭మ/௞)
= ௭భ√௞

√௭మ
        … (2.6) 

is said to follow student’s-t distribution with k degrees of freedom. 

The value of t-distribution can be obtained as: 

   t = ൣ ௑ത – μ ൧
[ ೞ

√೙
 ]

      … (2.7) 

where, 𝑋ത is the sample mean, μ is the population mean, s is the standard deviation 
of the sample and n is the sample size.  

Properties of t-Distribution 

1. The mean of the distribution is equal to 0 

2. The variance is equal to [k/(k – 2)] where k is the degrees of freedom and 
k >2. 

3. The variance is always greater than 1, although it is close to 1 when the 
degree of freedom is large. For infinite degrees of freedom the t-
distribution is the same as the standard normal distribution. 

The t-distribution can be used under the following conditions: 

1. The population distribution is normal 

2. The population distribution is symmetric, unimodal without outliers, and 
the sample size is at least 30 

3. The population distribution is moderately skewed, unimodal without 
outliers and the sample size is at least 40 

4. The sample size is greater than 40 without outliers. 

Look into the above conditions. If the parent population (from which the sample 
is drawn) is normal we can apply t-distribution for any sample size. If population 
is not normal, the sample size should be large. The t-distribution should not be 
used with small samples drawn from a population that is not approximately 
normal. 

2.7  THE F- DISTRIBUTION 
Another continuous probability distribution that we discuss now is the F 
distribution. If 𝑧ଵ and 𝑧ଶ  are two chi-squared variables that are independently 
distributed with  𝑘ଵand  𝑘ଶ degrees of freedom respectively, the variable 

𝐹 = ௭భ/௞భ
௭మ/௞మ

        … (2.8) 

follows F distribution with  𝑘ଵ  and  𝑘ଶ   degrees of freedom respectively. The 
variable is denoted by 𝐹௞భ,௞మ where, the subscripts  𝑘ଵ and  𝑘ଶ are the degrees of 
freedom associated with the chi-squared variables.  
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You should note that  𝑘ଵ is called the numerator degrees of the freedom and in 
the same way,  𝑘ଶ is called the denominator degrees of freedom. 

Some important properties of the F distribution are mentioned below. 

1)    The F distribution, like the chi-squared distribution, is also skewed to the          
 right. But, as k1 and k2 increase, the F distribution approaches the normal 

 distribution. 

2) The mean of the F distribution is k1/(k2 – 2), which is defined for k2 > 2, 

and its variance is 
 

   
.4for  defined is which 

42
22

2
2

2
21

21
2
2 


 k

kkk
kkk

 
3) An F distribution with 1 and k as the numerator and denominator degrees 

of freedom respectively is the square of a student’s-t distribution with k 
degrees of freedom. Symbolically, 

                2
,1 kk tF   

4) For fairly large denominator degrees of freedom k2, the product of the 
numerator degrees of freedom k1and the F value is approximately equal to 
the chi-squared value with degrees freedom k1, i.e., .2

1 1kFk   

The F distribution is extensively used in statistical inference and testing of 
hypotheses. Again, such uses also require obtaining areas under the F probability 
curve and consequently integrating the F density function. However, in this case 
also our task is facilitated by the provision of the F Table. 

 

 

Fig. 2.4: Probability Curves of F-Distribution 
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The F-distribution is used to test the population variance. We can test whether 
two normal populations have the same variance. The null hypothesis is that the 
variances are same while alternative hypothesis is that one of the variances is 
larger than the other. That is: 

     Ho: 𝜎ଵ
ଶ = 𝜎ଶ

ଶ 

     HA: 𝜎ଵ
ଶ > 𝜎ଶ

ଶ 

The alternative hypothesis states that the first population has larger variance. The 
null hypothesis can be tested by drawing a sample from each population and 
calculating the estimates 𝑠ଵ

ଶ  and 𝑠ଶ
ଶ . The samples are assumed to be 

independently drawn with size 𝑛ଵ and 𝑛ଶ respectively. We test the ratio 

 𝐹 = ௦భ
మ

௦మ
మ ~ 𝐹௡భషభ,,೙మ షభ

        … (2.9)   

If null hypothesis is not true, the ratio would be statistically different from unity. 
We should compare the calculated value of F (obtained from equation (2.9)) with 
the tabulated value of F (given in the appendix table at the end of the book). If 
the calculated value exceeds the tabulated value, then the null hypothesis is 
rejected.   

Check Your Progress 2 

1) A newly developed battery lasts 60 minutes on single charge. The 
standard deviation is 4 minutes. For the purpose of quality control test, the 
department randomly selects 7 batteries. The standard deviation of 
selected batteries is 6 minutes. What is the probability that the standard 
deviation in new test would be greater than 6 minutes?  

 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 ....................................................................................................................... 

 .......................................................................................................................

 ....................................................................................................................... 

2)  Define chi-square distribution. Bring out its important properties. 
 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 ....................................................................................................................... 

 ....................................................................................................................... 
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3)  Suppose the scores on a GRE test are normally distributed with 
population mean of 100. Suppose 20 people are randomly selected and 
tested. Sample standard deviation is 15. What is the probability that the 
average test score will be at most 110? 

 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 ....................................................................................................................... 

 ....................................................................................................................... 

4)  Test whether the students from private high schools are more 
homogeneous with respect to their science test score than the students 
from public high schools. It is given that the sample variances are 91.74 
and 67.16 respectively for public and private schools. The sample sizes of 
the students are 506 for public schools and 94 for private schools.  

 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 ....................................................................................................................... 

2.8  ESTIMATION OF PARAMETERS 
Estimation could be of two types: (i) point estimation, and (ii) interval 
estimation. In point estimation we estimate the value of the population parameter 
as a single point. On the other hand, in the case of interval estimation, we 
estimate the lower and upper bounds around the sample mean within which the 
population mean is likely to remain. 

2.8.1 Point Estimation 

Let us assume that a random variable X follows normal distribution. As you 
know, normal distribution is described by two parameters, viz., mean and 
standard deviation. Since we do not have data for the whole population (we have 
data for a sample only), we need to estimate mean E(X) = 𝜇௑ and variance 2

X on 
the basis of a sample only.  

Let us assume that we have data from a random sample of size n (suppose, 
sample size n = 50) from a known probability distribution (say, normal 
distribution). We use the sample to estimate the unknown parameters. Suppose, 
we find sample mean X  to be 23.28. This single numerical value is called the 
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n


 . This formula is called the point 

estimator. You should note that the point estimator is a random variable as its 
value varies from sample to sample.  

2.8.2 Interval Estimation 

In point estimation we estimate the parameter by a single value, usually the 
corresponding sample statistic. The point estimate may not be realistic in the 
sense that the parameter value may not exactly be equal to it.  

An alternative procedure is to give an interval, which would hold the parameter 
with certain probability. Here we specify a lower limit and an upper limit within 
which the parameter value is likely to remain. Also we specify the probability of 
the parameter remaining in the interval. We call the interval as ‘confidence 
interval’ and the probability of the parameter remaining within this interval as 
‘confidence level’ or ‘confidence coefficient’.  

The concept of confidence interval is somewhat complex. We have already 
explained it in BECC 107, Unit 13. Let us look at it again. We have drawn a 
sample of size n from a normal population. We do not know the population mean 
𝜇௑  and population variance 𝜎௑

ଶ . We know the sample mean 𝑋ത  and sample 
variance 𝑆௑

ଶ. Since 𝑋ത varies across samples, we use the properties of the sampling 
distribution of 𝑋ത to draw inferences about 𝜇௑.  

If  X is normally distributed, i.e. , we know that  
2

~ , x
XX

n


 
 
 

       … (2.10) 

From (2.10) we can say that sampling distribution of sample mean X  follows 
normal distribution with mean 𝜇௑ and standard deviation 𝜎௑

ଶ 𝑛⁄ . Let us transform 
the above as a standard normal variable.  

~ (0, 1)x

X

XZ N

n





        … (2.11) 

Now the problem before us is that we do not know the population variance 𝜎௑
ଶ. 

Thus we take its estimator 
2

2 ( )
1

i
X

X XS
n

 



. In that case, the appropriate test 

statistic is 

( )
/

X

x

Xt
S n


         … (2.11) 

Equation (2.11) follows t-distribution with (n 1) degrees of freedom.  

By re-arranging terms in equation (2.11) we obtain the confidence interval of 𝜇௑.  

This also helps us to obtain an interval estimation of 𝜇௑. 
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For 27 degrees of freedom (d.f.), the tabulated value is 2.052 at the 5 per cent 
level of significance (see Appendix Table). Thus  

P(2.052  t  2.052) = 0.95      … (2.12) 

The critical t values show the percentage of area under the t-distribution curve 
that remains between those values. The value t = 2.052 is called the lower 
critical value, and the value t = 2.052 is called the upper critical value. 

Equation (2.12) implies that for 27 d.f. the probability is 0.95 or 95% that the 
interval (2.052, 2.052) will include 𝜇௑ . 

∴ 𝑃 ቆ−2.052 ≤ 𝑡 =
𝑋̄ − 𝜇௑

𝑆௫ √𝑛⁄
≤ 2.052ቇ 

  2.052 2.052 0.95X X
X

S SP X X
n n


 

     
 

  (2.13) 

Equation (2.13) provides an interval estimator of 𝜇௑ . It is called the 95% 
confidence interval (CI) for the true but unknown population mean 𝜇௑. The value 
0.95 is called the confidence coefficient. It implies that the probability is 0.95 

that random interval 2.052 XSX
n

  contains true 𝜇௑. 

 2.052 XSX
n

  is called lower limit of interval. 

 2.052 XSX
n

  is called upper limit of interval. 

This is a random interval because the values are based on X  and XS
n

 which will 

vary from sample to sample. You should note that 𝜇௑ is not random; rather it is a 
fixed number. Therefore we can say that “the probability is 0.95 that 𝜇௑ lies in 
this interval”. 

2.9  PROPERTIES OF ESTIMATORS 
An estimator is considered as best linear unbiased estimator (BLUE) if it is 
linear, unbiased, efficient (with minimum variance).  and also consistent 
implying that the the value of estimator converges to its true population value as 
the sample size increases. All the properties of good estimators are discussed 
below. 

2.9.1 Linearity 

An estimator is said to be a linear estimator if it is a linear function of the sample 
observation 

 
1

n

i

XiX
n

   
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1 ..... nX X X
n

         … (2.14) 

Sample mean is the linear estimator because it is a linear function of the 
observations. 

2.9.2 Unbiasedness 

The value of a statistic varies across samples due to sampling fluctuation. 
Although the individual values of a statistic may be different from the unknown 
population parameter, on an average, the value of a statistic should be equal to 
the population parameter. In other words, the sampling distribution of  𝑋ത  should 
have a central tendency towards 𝜇௑ . This is known as the property of 
unbiasedness of an estimator. It means that although an individual value of a 
given estimator may be higher or lower than the unknown value of the population 
parameter, there is no bias on the part of the estimator to have values that are 
always greater or smaller than the unknown population parameter. If we accept 
that mean (here, expectation) is a proper measure for central tendency, then 𝑋ത  is 
an unbiased estimator for 𝜇௑ if 

 ( ) XE X   

2.9.3  Minimum Variance 

An estimator of X  is said to be the minimum variance estimator if its variance 

is smaller than the variance of any other estimator of 𝜇௑. Suppose there are three 
estimators of 𝜇௑ . The variance of 3̂  is the smallest of the three estimators. 

Hence, it is minimum variance estimator. 

2.9.4 Efficiency 

The property of unbiasedness is not adequate by itself. It is possible to obtain two 
or more estimators of a parameter as unbiased. Therefore, we must choose the 
most efficient estimator. Suppose two estimators of  𝜇௑ as given as follows: 

 
2

~ ,XX N
n


 
 
 

      … (2.15) 

2

~ , , 3.142
2med XX N

n
  

     
  

 (approx.)  … (2.16) 

In the case of large samples, the median computed from a random sample of 
normal population also follows normal distribution with the same 𝜇௑. However, 
it has a large variance. 
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2

2
( ) 1.571

( ) 2 2
medVar X n

Var X
n


 


    (approx.)  … (2.17) 

Equation (2.17) implies that the variance of sample median is 57% larger than the 
variance of sample mean. Therefore, the sample mean provides more precise 
estimate of population mean compared to the median (Xmed). Thus, X  is an 
efficient estimator of 𝜇௑.  

2.9.5 Best Linear Unbiased Estimator (BLUE) 

Suppose we consider a class of estimators. Among these estimators, an estimator 
fulfils three properties, viz., (i) it is linear, (ii) it is unbiased, and (iii) it has 
minimum variance. In that case, it is called a ‘best linear unbiased estimator’ 
(BLUE). 

2.9.6 Consistency 

Consistency is a large sample property. If we increase the sample size, the 
estimator should have a tendency to approach the value of the parameter. Thus, 
an estimator is said to be consistent if the estimator converges to the parameter as 

.n  

Suppose 2~ ( , )X XX N   . We draw a random sample of size n from the 

population. 

Two estimators of X  are ] 

  iXX
n

 
       … (2.18)

 

  *

1
iXX

n
 


      … (2.19) 

As you know, the first estimator (2.18) is the sample mean and it is unbiased 
since ( ) XE X  . 

The second estimator (2.19) is biased as  

 *( )
1 X

nE X
n

    
 

Thus, *( ) XE X   

As the sample size increases we should not find much difference between the two 
estimators. As n increases, X* will approach 𝜇௑. Such an estimator is known as 
consistent estimator. An estimator is consistent estimator if it approaches the true 
value of parameter as sample size gets larger and larger. 
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Check Your Progress 3 

1)  Describe the desirable properties of an estimator.  

 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................  

2)  For a sample of size 30, the sample mean and standard deviation are 15 
and 10 respectively. Construct the confidence interval of population mean 
(𝝁𝑿) at 5 per cent level of significance. 

 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 ....................................................................................................................... 

2.10 LET US SUM UP 
Statistical concepts guide us the way to make judgement in the presence of 
uncertainty. In this Unit we discussed about certain basic statistical concepts. We 
discussed about certain continuous probability distributions such as normal, 
standard normal, chi-square, t and F. We depicted the probability distribution 
curves of these curves. In the appendix given at the end of this book, we have 
given the following: Normal Area Table, and critical values of t, chi-square and F 
distributions.  

In addition to the above we have described the properties of a good estimator. We 
have explained concepts such as unbiasedness, consistency and efficiency in the 
context of an estimator.  

2.11  ANSWERS/HINTS TO CHECK YOUR 
PROGRESS EXERCISES 

Check Your Progress 1 

1)  You have to find out the area under the standard normal curve.  
If X = 40,  𝑧 = (ସ଴ିଷ଴)

ସ
= 2.5 

  Hence P (X < 40) = P (z < 2.5) = [area to the left of 2.5] = 0.9938 

2) Go through Section 2.4 and answer.  

3) a) P(X < 7) = P (Z < – 2.5) = 0.0062 

  b) P(20 < X < 22) = P (–2.5 < Z < 0) = 0.4938 
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Check Your Progress 2 

1)   Standard deviation of the population is 4 minutes. Standard deviation of the 
sample is 6 minutes. The number of sample observations is 7.  

Χ2 = [(n–1)*s2 ]/ σ2  

Χ2 = [(7 – 1) * 62 ] / 42 = 13.5 

Degree of freedom is (n–1) = (7–1) = 6. The probability that a standard 
deviation would be less than or equal to 6 minutes is 0.96. This implies that 
the probability that the standard deviation would be greater than 6 minutes 
is (1 – 0.96) = 0.04. 

2)  Go through Section 2.5 and answer. 

3)  Population mean 𝜇 = 100. Sample size n = 20. Degrees of freedom is (20–
1) = 19. Sample mean 𝑋ത should be at most 110. Sample standard deviation 
s =15. Since we do not know the population standard deviation we apply t-
distribution. Applying the formula,     

   t = ൣ ௑ത – μ ൧
[ ೞ

√೙
 ]

. Thus, t = ଵଵ଴ ିଵ଴
భఱ

√మబ

 = 0.996  

This implies 99.6% chance that the sample average will be no greater than 
110. 

4)  The degrees of freedom (n1–1) and (n2–1) are 505 and 93 respectively.  Our 
null hypothesis H0 is that the both type schools are equally homogeneous 
with respect to science marks. We are comparing variances. Thus we apply 
F-test. 

 F = 𝑠ଵ
ଶ

𝑠ଶ
ଶ൘  = ଽଵ.଻ସ

଺଻.ଵ଺
 = 1.366 

The tabulated value of F for 505 and 93 degrees of freedom is 1.27. Since 
calculated value is more than the tabulated value, we reject the H0. We 
conclude that the students from private schools are more homogeneous 
with respect to science marks.  

Check Your Progress 3 

1)  Go through Section 2.9 and answer.  

2)  Since population standard deviation is not known, you should apply t-
distribution. Check the tabulated value of t given at the Appendix for 29 
degrees of freedom and 5 per cent level of significance. Construct the 
confidence interval as given at equation (2.12). 

 



UNIT 3  OVERVIEW OF HYPOTHESIS TESTING  
Structure 

3.0  Objectives 

3.1  Introduction 

3.2  Procedure of Hypothesis Testing 

3.3  Estimation Methods 

3.4  Rejection Region and Types of Errors  
 3.4.1 Rejection Region for Large Samples 

 3.4.2 One-tail and Two-tail Tests 

 3.4.1 Rejection Region for Small Samples 

3.5   Types of Errors  

3.6  Power of Test 

3.7  Approaches to Parameter Estimation 
 3.7.1  Test of Significance Approach 

 3.7.2  Confidence Interval Approach 

3.8  Let Us Sum Up 

3.9 Answers/Hints to Check Your Progress Exercises 

3.0  OBJECTIVES 
After going through this unit, you will be able to 

 explain the concept and significance of hypothesis testing; 

 describe the applications of a test statistic; 

 explain the procedure of testing of hypothesis of population parameters; 

 distinguish between the Type I and Type II errors; and 

 apply the tests for comparing parameters from two different samples. 

3.1  INTRODUCTION 
The purpose behind statistical inference is to use the sample to make judgement 
about the population parameters. The concept of hypothesis testing is crucial for 
predicting the value of population parameters using the sample. Various test 
statistics are used to test hypotheses related to population mean and variance. The 
variance of two different samples can also be compared using hypothesis testing. 
There are two approaches to testing of hypothesis: (i) test of significance 

                                                
 Dr. Pooja Sharma, Assistant Professor, Daulat Ram College, University of Delhi  
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approach, and (ii) confidence interval approach. While testing a hypothesis, there 
is a likelihood of committing two types of errors: (i) type I error, and (ii) type II 
error. In this unit we will elaborate on the process of hypothesis testing, and 
explain the method of rejecting the null hypothesis on the basis of appropriate 
test statistic.  

3.2  PROCEDURE OF HYPOTHESIS TESTING 
We formulate a hypothesis on the basis of economic theory or logic. A 
hypothesis is a tentative statement about certain characteristic of a population. As 
you know, a population is described by its parameters (such as mean, standard 
deviation, etc.). Thus a hypothesis is an assumption about a population 
parameter. A hypothesis may or may not be true. For finding out that we test a 
hypothesis by certain econometric method.  

Formulation of a hypothesis involves a prior judgement or expectation about 
what value a particular parameter may assume. For example, prior knowledge or 
an expert opinion tells us that the true average price to earnings (P/E) ratio in the 
local stock exchange is 20. Thus our hypothesis is that the P/E ratio is equal to 
20.  

In order to test this hypothesis, suppose we collect a random sample of stocks and 
find that the average P/E ratio is 23. Is the figure 23 statistically different from 
20? Because of sampling variation there is likely to be a difference between a 
sample estimate and its population value. It is possible that statistically the 
number 23 may not be very different from the number 20. If this is the case, then 
we should not reject the hypothesis that the average P/E ratio is 20. 

In hypothesis testing there are four important components: i) null hypothesis, ii) 
alternative hypothesis, iii) test statistic, and iv) interpretation of results. We 
elaborate on these components below. 

(i) Formulation of null and alternative hypotheses: There are two types of 

hypothesis, viz., null hypothesis and alternative hypothesis. A ‘null 

hypothesis’ is the statement that we consider to be true about the 

population. It is called ‘null’ thereby meaning empty or void. For 

example, a null hypothesis could be: there is no relationship between 

employment and education. Therefore, if we carry out a regression of 

employment on education, the regression coefficient should be zero. 

Usually we denote null hypothesis by 0H . The alternative hypothesis is 

the opposite of the null hypothesis. Alternative hypothesis is usually 

denoted by 𝐻ଵ. You should note that 0H and 𝐻ଵ are ‘mutually exclusive’; 

they cannot occur simultaneously. 
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(i) Identification of the test statistic: The null hypothesis is put to test by a 
test statistic. There are several test statistics (such as t, F, chi-square, 
etc.) available in econometrics. We have to identify the appropriate test 
statistic.  

(ii) Interpretation of the results based on the value of the test statistic: After 
carrying out the test, we interpret the results. When we apply the test 
statistic to the sample data that we have, we obtain certain value of the 
test statistic (for example, t-ratio of 2.535). Interpretation of results 
involves comparison of two values: tabulated value of the test statistics 
and the computed value. If the computed value exceeds the tabulated 
value we reject the null hypothesis. 

The sampling distribution of a test statistic under the null hypothesis is called the 
‘null distribution’. When the data depicts strong evidence against the null 
hypothesis, the value of test statistic becomes very large. By observing the 
computed value of the test statistic we draw inferences. Apart from the test 
statistic econometric software provides a p-value. The p-value indicates the 
probability of the null hypothesis being true. Thus, if we obtain a p-value of 0.04, 
it says the probability of the null hypothesis being true is 0.04 or 4 per cent. 
Therefore, if we take 5 per cent level of significance, we reject the null 
hypothesis.  

3.3  ESTIMATION METHODS  
In Unit 2 we described about two concepts; point estimation and interval 
estimation. We also discussed about certain probability distribution functions 
such as normal, t, F and chi-square.  

There are basically three estimation methods: (i) least squares, (ii) maximum 
likelihood, and (iii) method of moments. We will use the least squares estimation 
method extensively in this course. In Unit 7 of this course we have introduced the 
maximum likelihood method. You are not introduced to ‘Method of Moments’ in 
this course.  

In Unit 5 of the course BECC 107 we discussed with the concept of regression. 
In Section 5.9 that Unit we mentioned that the error variable in the regression 
should be minimised. For that purpose, we minimised the sum of squares of the 
error terms (∑ 𝑢௜

ଶ). Now you can guess why it is called the least squares method. 
In this course we confine to ordinary least squares (OLS) method. We deal with 
OLS method first with the two-variable case. Subsequently, we extend it to more 
than two variables. This leads us the multiple regression model.  

The name ordinary least squares (OLS) suggests that it is the simplest of the least 
squares methods. It implies that further complexities can be brought into the OLS 
method. Correctly so; there are generalised least squares (GLS), two-stage least 
squares (2SLS), three-stage least squares (3SLS), etc. Therefore, be careful when 
you read about the least squares method – notice which method the text is 
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referring to. When you come across the term GLS in some context do not confuse 
it with OLS – both methods are different. In both OLS and GLS the sum of 
squares of the error terms is minimised (that is why both are referred to as least 
squares method) but there is some transformation of the regression model in the 
case of GLS. The advanced methods of least squares are not dealt with in this 
course. Remember that for carrying out the least squares method you do not need 
to assume any probability distribution function about the variables.  

The maximum likelihood (ML) method assumes a probability distribution about 
the variables. Normal distribution is the most commonly used probability 
distribution function in maximum likelihood estimation. In ML method we form 
a likelihood function, which is derived from the probability distribution function. 
Note that in econometrics we are given the data – the data is obtained from a 
sample survey. We estimate the parameters of the regression model, under that 
the assumption that the data follows certain probability distribution function (for 
example, normal distribution). The likelihood function can follow any of the 
probability distribution functions; not just normal distribution. Recall from your 
statistics course that in probability distribution function we are given the 
parameters and we find out the probability of occurrence of particular dataset. In 
ML method, we do the opposite – we are provided with the data, and we are 
estimating the parameters.  

The method of moments (MOM) makes use of the moment generating function 
(MGF) properties. You have been introduced to the concept of ‘moments’ in Unit 
4 of BECC 107. The moment generating function of certain probability 
distributions are used for estimation of the parameters. The method of moments 
is quite advanced and beyond the scope of this course.  

3.4  REJECTION REGION AND TYPES OF ERRORS 
In the previous Unit we discussed about point estimation and interval estimation. 
The underlying idea behind hypothesis testing and interval estimation is the 
same. Recall that a confidence interval is built around sample mean with certain 
confidence level. A confidence level of 95 per cent implies that in 95 per cent 
cases the population mean would remain in the confidence interval estimated 
from the sample mean. It is implicit that in 5 per cent cases the population mean 
will not remain within the confidence interval. Note that when the population 
mean does not remain within the confidence interval our test statistic should 
reject the null hypothesis. 
 

3.4.1  Rejection Region for Large Samples 

Let us explain the concept of critical region. Sampling distribution of sample 

mean ( x ) follows normal distribution with mean   and standard deviation 
n
 . 

The standard deviation of a sampling distribution is known as ‘standard error’. 
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Thus, x  can be transformed into a standard normal variable, z, so that it follows 
normal distribution with mean 0 and standard deviation 1.  

In notations, 
n

xz



  and )1,0(~ Nz . 

Recall that area under the standard normal curve gives the probability for 
different range of values assumed by z. These probabilities are presented as the 
area under standard normal curve.  

Let us explain the concept of critical region or rejection region through the 
standard normal curve given in Fig. 14.1 below. When we have a confidence 
coefficient of 95 percent, the area covered under the standard normal curve is 95 
per cent. Thus 95 per cent area under the curve is bounded by 96.196.1  z . 
The remaining 5 per cent area is covered by 96.1z  and 96.1z . Thus 2.5 per 
cent of area on both sides of the standard normal curve constitute the rejection 
region. This area is shown in Fig. 3.1. If the sample mean falls in the rejection 
region we reject the null hypothesis. 

 
Fig. 3.1: Critical Regions 

3.4.2  One-tail and Two-tail Tests 

In Fig. 3.1 we have shown the rejection region on both sides of the standard 
normal curve. However, in many cases we may place the rejection region on one 
side (either left or right) of the standard normal curve. Remember that if   is the 

level of significance, then for a two-tail test 
2
  area is placed on both sides of the 

standard normal curve. But if it is a one-tail test, then   area is placed on one-
side of the standard normal curve. Thus the critical value for one-tail and two tail 
test differ.  

The selection of one-tail or two-tail test depends upon the formulation of the 
alternative hypothesis. When the alternative hypothesis is of the type xH A :  
we have a two-tail test, because x  could be either greater than or less than  . On 
the other hand, if alternative hypothesis is of the type xH A : , then entire 
rejection is on the left hand side of the standard normal curve. Similarly, if the 
alternative hypothesis is of the type xH A : , then the entire rejection is on the 
right hand side of the standard normal curve.  
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The critical values for z depend upon the level of significance. In the appendix 
tables at the end of this book Table 14.1 these critical values for certain specified 
levels of significance ( ) are given. 
 

3.4.3  Rejection Region for Small Samples  

In the case of small samples ( 30n ), if population standard deviation is known 
we apply z-statistic for hypothesis testing. On the other hand, if population 
standard deviation is not known we apply t-statistic. The same criteria apply to 
hypothesis testing also.  

In the case of small samples if population standard deviation is known the test 
statistic is  

n

x
z




         …(3.1) 

On the other hand, if population standard deviation is not known the test statistic 
is  

ns

x
t


         …(3.2) 

In the case of t-distribution, however, the area under the curve (which implies 
probability) changes according to degrees of freedom. Thus while finding the 
critical value of t we should take into account the degrees of freedom. You 
should remember two things while finding critical value of t. These are: i) level 
of significance, and ii) degrees of freedom.  

3.5  TYPES OF ERRORS 
In hypothesis testing we reject or do not reject a hypothesis with certain degree of 
confidence. As you know, a confidence coefficient of 0.95 implies that in 95 out 
of 100 samples the parameter remains within the acceptance region and in 5 per 
cent cases the parameter remains in the rejection region. Thus in 5 per cent cases 
the sample is drawn from the population but sample mean is too far away from 
the population mean. In such cases the sample belongs to the population but our 
test procedure rejects it. Obviously we commit an error such that 0H  is true but 
gets rejected. This is called ‘Type I error’. Similarly there could be situations 
when the 0H  is not true, but on the basis of sample information we do not reject 
it. Such an error in decision making is termed ‘Type II error’ (see Table 3.1). 

Note that Type I error specifies how much error we are in a position to tolerate. 
Type I error is equal to the level of significance, and is denoted by  . Remember 
that confidence coefficient is equal to 1 . 

The probability of committing a type I error is designated as  and is called the 
level of significance. The probability of committing type II error is called . 
Thus, 
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 Type I error =  = prob (rejecting H0 | H0 is true)  

 Type II error =  = prob (accepting H0 | H0 is false) 

Table 3.1: Type of Errors 

 0H  true 0H  not true 

Reject 0H   Type I Error Correct decision 

Do not reject 0H  Correct decision Type II Error 

Check Your Progress 1 

1)  Distinguish between one-tail and two-tail tests.  
 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 ....................................................................................................................... 

 ....................................................................................................................... 

2) Distinguish between Type I and Type II errors. 

 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 ....................................................................................................................... 

 ....................................................................................................................... 

3)  Suppose the cholesterol level of an individual is normally distributed with 
mean of 180 and standard deviation of 20. Cholesterol level of over 225 is 
diagnosed as not healthy. 

a)  What is the probability of making type I error? 

b) What level should people be diagnosed as not healthy if we want the 
probability of type I error to be 2%? 

 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 ....................................................................................................................... 
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As pointed out above, there are types I and type II errors in hypothesis testing. 
Thus, there are two types of risks: (i)  represents the probability that the null 
hypothesis is rejected when it is true and should not be rejected. (ii)  represents 
the probability that null hypothesis is not rejected when in reality it is false. The 
power of test is referred to as (1  ), that is the complement of . It is basically 
the probability of not committing a type II error. 

A 95% confidence coefficient means that we are prepared to accept at most 5% 
probability of committing type I error. We do not want to reject a true hypothesis 
by more than 5 out of 100 times. This is called 5% level of significance. 

The power of test depends on the extent of difference between the actual 
population mean and the hypothesized mean. If the difference is large then the 
power of test will be much greater than if the difference is small. Therefore, 
selection of level of significance  is very crucial. Selecting large value of  
makes it easier to reject the null hypothesis thereby increasing the power of the 
test (1  ). 

At the same time increasing the sample size increases the precision in the 
estimates and increases the ability to detect the difference between the population 
parameter and sample, increasing the power of the test. 

3.7  APPROACHES TO PARAMETER ESTIMATION 
In statistical hypothesis testing, estimation theory deals with estimating the 
values of parameters based on measurement of empirical data that has a random 
component. The method of estimation requires setting up of a null hypothesis and 
a corresponding alternative hypothesis, which are further rejected or not rejected 
based on the two approaches used to make decision regarding the null hypothesis. 
The two methods have been described in the following section.  

3.7.1  Test of Significance Approach 

Any test statistic can be used for the test of significance approach to hypothesis 
testing. Let us consider the t-statistic. 

 𝑡 = ௑̄ିఓ೉
഑೉
√೙

       … (3.3) 

If the difference between 𝑋̄ and 𝜇௑ is small, |t| value will also be small, where |t| 
is the absolute value of t-statistic. You should note that  t = 0, if 𝑋̄ = 𝜇௑. In this 
case we do not reject the null hypothesis. As | t | gets larger, we would be more 
inclined to reject the null hypothesis.  

Example. Suppose for a dataset 𝑋̄ = 23.25, 𝑆௑ = 4.49, and 𝑛 = 28. Our nulland 
alternative hypothesis are  

𝐻଴:ௗௗ𝜇௑ = 18.5  and 𝐻஺: 𝜇௑ ≠ 18.5 
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 𝑡 = ଶଷ.ଶହିଵ଼.ହ
ଽ.ସଽ √ଶ଼⁄ = 2.6486     … (3.4) 

We need to specify , the probability of rejecting the null hypothesis (probability 
of commuting type I error). Let us fix  at 5%. 

 𝐻଴: 𝜇௑ = 18.5 

 𝐻஺:ௗௗ𝜇௑ ≠ 18.5 (two-tailed test) 

Since the computed t value is 2.6486. This value lies in the right-tail critical 
region of the t-distribution. We therefore reject the null hypothesis (H0 ) that the 
true population mean is 18.5. 

A test is statistically significant means that we one can reject the null hypothesis. 
This implies that the probability of observed difference between the sample value 
and the critical value (also called tabulated value) is not small and is not due to 
chance.   

A test is statistically not significant means that we do not reject the null 
hypothesis. The difference between the sample value and the critical value could 
be due to sampling variation or due to chance mechanism.  

3.7.2  Confidence Interval Approach 

Let us assume that the level of significance or the probability of commuting type 
I error is fixed at α = 5%. Suppose the alternative hypothesis is two-sided. 
Assume that we apply t-distribution since variance is not known. From the t table 
we find the critical value of t at 8 degree of freedom ( ) (10 2)n K    at  = 

5%. We find out the value to be 2.360. Thus we construct the confidence interval 

 𝑃(−2.360 ≤ 𝑡 ≤ 2.306) = 0.95    … (3.5) 

The probability that t value lies between the limits ( −2.360 ≤ 𝑡 ≤ 2.360) is 
0.95 or 95%. The values −2.360 and 2.360 are the critical t values. 

If we substitute the t from equation (3.2) 

 𝑃 ቀ−2.306 ≤ ௕మିఉమ
ୗ୉(ୠమ)

≤ 2.306ቁ = 0.95    … (3.6) 

As we will see in Unit 4, SE(bଶ) is ஢ෝ

ටఀ௫೔
మ
 

If we substitute the above value in equation (3.6) and re-arrange terms we obtain  

 𝑃 ቌ𝑏ଶ − 2.306 ஢ෝ

ටఀ௫೔
మ

≤ 𝛽ଶ ≤ 𝑏ଶ + 2.306 ஢ෝ

ටఀ௫೔
మ
ቍ = 0.95  … (3.7) 
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confidence interval is known as the region of acceptance (H0). The area outside 
the confidence interval is known as the rejection region (HA). 

If the confidence interval includes the value of the parameter 2,we do not reject 
the hypothesis. But if the parameter lies outside the confidence interval, we reject 
the null hypothesis. 

Check Your Progress 2 

1)   What is meant by power of a test? 

 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 ....................................................................................................................... 

 ....................................................................................................................... 

2) Explain how a confidence interval is built.  
 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 ....................................................................................................................... 

 ....................................................................................................................... 

3.8  LET US SUM UP 
This unit elaborated the procedure of statistical inference regarding the 
population parameters. There are two approaches to hypothesis testing of 
population parameters: test of significance approach, and confidence interval 
approach. The unit also pointed out that there are errors involved in testing of 
hypothesis. While making a decision regarding acceptance or rejection of a 
hypothesis, two types of error may be committed: type I error, and type II error. 
Power of a test is the probability of not committing a type II error, i.e., rejecting 
H0 when it is false is (1  ). 

3.9  ANSWERS TO CHECK YOUR PROGRESS 
EXERCISES 

Check Your Progress 1 

1)  Go through Sub-Section 3.4.2 and answer. 
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2) We have given the types of errors in table 3.1. You should elaborate on 
that.  

3) a) In order to test this we use z-statistics z = (X  – µ)/𝜎, z= (225 – 180)/ 20 = 
2.25  

b) The area corresponding to the z value of 2.25 is 0.0122, which the 
probability of making type I error. An area of tail as 2% corresponds to  Z 
= 2.05.  

  Z = (X – µ)/𝜎  

2.05 = (X – µ)/ 20, i.e., (X – µ) = 2.05 * 20 = 41 

 X = 41 + 180 = 221  

Check Your Progress 2 

1)  Go through Section 3.6 and answer. 

2) Go through Section 3.7.2 and answer.  

 

 

 



UNIT 4 SIMPLE LINEAR REGRESSION 
MODEL: ESTIMATION 

Structure 

4.0  Objectives 

4.1  Linear Regression Model 

4.2 Population Regression Function (PRF) 

 4.2.1 Deterministic Component 

 4.2.2 Stochastic Component 

4.3   Sample Regression Function (SRF) 

4.4  Assumptions of Classical Regression Model 

4.5  Ordinary Least Squares Method of Estimation 

4.6  Algebraic Properties of OLS Estimators 

4.7  Coefficient of Determination  

  4.7.1 Formula of Computing R2 

 4.7.2 F-Statistic for Goodness of Fit 

 4.7.3 Relationship between F and R2 

 4.7.4 Relationship between F and t2 

4.8  Let Us Sum Up 

4.9  Answers/ Hints to Check Your Progress Exercises 

4.0  OBJECTIVES 
After going through this unit, you should be able to 

 describe the classical linear regression model; 

 differentiate between Population Regression Function (PRF) and Sample 
Regression Function (SRF); 

 find out the Ordinary Least Squares (OLS) estimators; 

 describe the properties of OLS estimators;  

 explain the concept of goodness of fit of regression equation; and 

 describe the coefficient of determination and its properties. 

                                                
 Dr. Pooja Sharma, Assistant Professor, Daulat Ram College, University of Delhi  
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In Unit 5 of the course BECC 107: Statistical methods for Economics we 
discussed the topics correlation and regression. In that Unit we gave a brief idea 
about the concept of regression. You already know that there are two types of 
variables in regression analysis: i) dependent (or explained) variable, and ii) 
independent (or explanatory) variable. As the name (explained and explanatory) 
suggests the dependent variable is explained by the independent variable.  

Usually we denote the dependent variable as Y and the independent variable as 
X. Suppose we took up a household survey and collected n pairs of observations 
in X and Y. The relationship between X and Y can take many forms. The general 
practice is to express the relationship in terms of some mathematical equation. 
The simplest of these equations is the linear equation. It means that the 
relationship between X and Y is in the form of a straight line, and therefore, it is 
called linear regression. When the equation represents curves (not a straight line) 
the regression is called non-linear or curvilinear. 

Thus in general terms we can express the relationship between X and Y as 
follows in equation (4.1). 

𝑌 = 𝑓(𝑋)         … (4.1) 

In this block (Units 4, 5 and 6) we will consider simple linear regression models 
with two variables only. The multiple regression model comprising more than 
one explanatory variable will be discussed in the next block.  

Regression analysis may have the following objectives: 

 To estimate the mean or average value of the dependent variable, given the 
values of the independent variables. 

 To test the hypotheses regarding the underlying economic theory. For 
example, one may test the hypotheses that the price elasticity of demand is   
(–)1 that is, the demand is perfectly elastic, assuming other factors affecting 
the demand are held constant. 

 To predict the mean value of the dependent variable given the values of the 
independent variable.  

4.2  POPULATION REGRESSION FUNCTION 
A population regression function hypothesizes a theoretical relationship between 
a dependent variable and a set of independent or explanatory variables. It is a 
linear function. The function defines how the conditional expectation of a 
variable Y responds to the changes in independent variable X.  

𝑌௜ = 𝐸(𝑌௜|𝑋௜) + 𝑢௜        … (4.2) 

The function consists of a deterministic component 𝐸(𝑌|𝑋) and a non-
deterministic or ‘stochastic’ component 𝑢, as depicted in equation (4.2).  
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We are concerned about examining the determinants of dependent variable (Y) 
conditional upon the given values of impendent variables (X).  

4.2.1 Deterministic Component 

The conditional expectation of Y constitutes the deterministic component of the 
regression model. It is obtained in the form of a deterministic line. It is also 
known as the Population Regression Line (PRL). The non-deterministic or 
stochastic component is represented by a random error term, denoted by 𝑢௜ .  

Let us take an example. Suppose we want to examine the impact of weekly 
personal disposable income (PDI) on the weekly expenditure for a set of 
population, then we consider weekly PDI as the independent variable (Y) and 
weekly expenditure as the dependent variable (X). For each given value of 
weekly PDI, the average value of weekly expenditure is plotted on the vertical 
axis. People with higher income are likely to spend more, therefore intuitively, 
the relationship between weekly PDI and weekly expenditure is positive. Thus 
the following Population Regression Line is obtained and plotted on a graph as 
explained below. 

𝐸(𝑌௜|𝑋௜) = 𝛽ଵ + 𝛽ଶ𝑋௜       … (4.3) 

Note that in equation (4.3), 𝛽ଵ and 𝛽ଶ are the parameters. Here 𝛽ଵ is the intercept 
of the population regression function. It indicates the expected value of the 
dependent variable when the explanatory variable is zero. Further, 𝛽ଶ is the slope 
of the population regression function. It indicates the magnitude by which the 
dependent variable will change if there is a one unit change in the independent 
variable. The population parameters describe the relationship between the 
dependent variable and the independent variable in the population.  

 

 

 

 

 

 

 

 

 

 

 

 

                                    Fig. 4.1: Weekly Personal Disposable Income 
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Variables Case Look into the circled points in Fig. 4.1. These points represent the mean or the 

average value of Y corresponding to various 𝑋௜. They are called the conditional 
means or conditional expectation values. If we connect the various expected 
values of Y, the resulting lines is called the Population Regression Line (PRL).  

4.2.2 Stochastic Component 

When we collect data from a sample, we do not a deterministic relationship 
between X and Y. For example, for the same level of income the expenditure of 
two persons could be different. Suppose there are two persons with monthly 
income of Rs. 20000 per month. While the monthly expenditure of one person is 
Rs. 15000, that of the other person could be Rs. 19000. The differences in 
monthly expenditure for the second person could be higher due to his health 
condition or living style. Such differences in the dependent variable are captured 
by the stochastic error term. In Fig. 4.1, for a particular value of X, the value of 
the Y variable is depicted by a vertical dotted line. The expected value of Y for a 
particular value of X is circled (see Fig. 4.1).  

Thus, there is a need to specify the stochastic relationship between X and Y. The 
specification of the sample regression function (SRF) is  

𝑌௜ = 𝛽ଵ + 𝛽ଶ𝑋௜ + 𝑢௜        … (4.5) 

In equation (4.5) the term 𝑢௜ is called stochastic error or random error.  

The first component of equation (4.5) is the deterministic component  (𝛽ଵ +
𝛽2𝑋𝑖, which we have already discussed. The deterministic component is the 
mean or average expenditure in the example under consideration. The 
deterministic component is also called the systematic or deterministic 
component.  

The second component 𝑢௜  is called the random component (determined non-
systematically by factors other than income). The error term 𝑢௜ is also known as 
the ‘noise component’. The error term 𝑢௜ is a random variable. The value of 𝑢௜ 
cannot be controlled or known.  

There are three reasons for including the error term 𝑢௜ in a regression model: (i) 
The error term represents the influence of those variables that are not explicitly 
introduced in the regression model. For example, there are several variables that 
influence consumption expenditure of a household (such as number of family 
members, health status, neighbourhood, etc.). These variables affect the 
dependent variable, and there exists intrinsic randomness between X and Y. (ii) 
Human behaviour is not predictable. This sort of randomness is reflected and 
captured by the random error term. (iii) The errors in measuring data such as 
rounding off of annual family income, absence of many students from the school, 
etc.  

Because of the randomness the actual value of the data would either remain 
above or below the expected value of the dependent variable. In other words, the 
actual value will deviate from the average, that is, the systematic component. 
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Having understood the elementary concept of Population Regression Function 
and Population Regression Line (PRL), the following section describes the 
estimation of PRL using the sample.  

Check Your Progress 1 

1) What are the objectives of estimating regression models?  

 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 ....................................................................................................................... 

 .......................................................................................................................

 ....................................................................................................................... 

2) Why does the average value of the dependent variable differ from the
 actual value?  
 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 ....................................................................................................................... 

3) Why do we include an error term (𝒖𝒊) to the regression model?  

 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 ....................................................................................................................... 

4.3  SAMPLE REGRESSION FUNCTION  
We rarely have the data related to the entire population at our disposal. We only 
have a sample from the population. Thus, we need to use the sample to estimate 
the population parameters. We may not be able to find out the population 
regression line (PRL) because of sampling fluctuations or sampling error. 
Suppose we have two samples from the given population. Using the samples 
separately, we obtain Sample Regression Lines (SRLs). A sample represents the 
population. In Fig. 4.2 we have shown two sample regression lines, SRL1 and 
SRL2. 
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Fig: 4.2: Two Sample Regression Lines 

Both the sample regression lines represent the population regression line. 
However, due to sampling fluctuation, the slope and intercept of both the SRLs 
are different. Analogous to population regression function (PRF) that underlies 
the PRL, we develop the concept of Sample Regression Function (SRF) 
comprising Sample Regression Line (SRL) and the error term 𝑢௜. 

 

 

 

 

 

 

 

 

 

  

  

  

 

Fig 4.3: Population Regression Line and Sample Regression Line 
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In Fig. 4.3 we depict the population regression line (PRL) and the sample 
regression line (SRL). We observe that the slopes of both the lines are different. 
Thus, 𝑏ଵ ≠ 𝛽ଵ and 𝑏ଶ ≠ 𝛽ଶ. Let us consider a particular value of the explanatory 
variable, 𝑋ଵ. The corresponding value of the explained variable is 𝑌ଵ . On the 
basis of the sample regression line we obtain estimated value of the explained 
variable, 𝑌෠ଵ. Now let us find out the distinction between the error term (u) and the 
residual (e). The distance between the actual value 𝑌ଵ  and the corresponding 
point on the population regression line is 𝑢ଵ. This error 𝑢ଵ is not known to us, 
because we do not know the values of 𝛽ଵ and 𝛽ଶ. What we know is 𝑌෠ଵ, which is 
estimated on the basis of 𝑏ଵ  and 𝑏ଶ . The distance between 𝑌ଵ  and 𝑌෠ଵ  is the 
residual, 𝑒ଵ.  

The population regression line as given in equation (4.2) is  

𝑌௜ = 𝐸(𝑌௜|𝑋௜) + 𝑢௜    

The sample regression line that we estimate is given by 

 𝑌෠௜ = 𝑏ଵ + 𝑏ଶ𝑋௜       … (4.6) 

In equation (4.6) the symbol (^) is read as ‘hat’ or ‘cap’. Thus, 𝑌෠௜ is read as ‘𝑌௜-
hat’.  

You should remember that what we observe are proxies 21 b,b and e in place of 
𝛽ଵ, 𝛽ଶ and 𝑢௜. 

𝑌௜ = 𝑌෠௜ + 𝑒௜ = 𝑏ଵ + 𝑏ଶ𝑋௜ + 𝑒௜      ... (4.7) 

where îY  = estimator of E(Y|Xi), the estimator of the population conditional 
mean 𝑌෠௜ is an estimator (or a sample statistic) in equation (4.7). A particular value 
obtained by the estimator is considered an estimate.  

The actual value of Y is obtained by adding the residual term to the estimated 
value of Y, also referred as the residual. The residual is the estimated value of 
random error term of the population regression function. The sample regression 
function in equation (4.7) is combination of sample regression line given by îY  
and the estimated residual term ei. The dark straight line in Fig. 4.3 is the 
Population Regression Line (PRL) and it is given by the following equation:  

𝐸(𝑌|𝑋) = 𝛽ଵ + 𝛽ଶ𝑋௜.        …(4.8) 

Therefore, the Population Regression function (PRF) can be expressed as  

𝑌௜ = 𝐸(𝑌௜|𝑋௜) + 𝑢௜  

Or, 

𝑌௜ = 𝛽ଵ + 𝛽ଶ𝑋௜ + 𝑢௜       … (4.9) 
 

Thus, the Population Regression Function in equation (4.9) is a combination of 
population regression line (PRL) 𝐸(𝑌௜|𝑋௜ ) and random error term 𝑢௜. The SRF is 
only an approximation of PRF. We attempt to find the most appropriate sample 
that yields estimators 𝑏ଵ  and 𝑏ଶ which are as close as possible to population 
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Variables Case parameters 𝛽ଵand 2 . In other words, 𝑏ଵis as close as possible to 1 , and 𝑏ଶ is as 

close as possible to 2 .  

4.4 ASSUMPTIONS OF CLASSICAL REGRESSION 
MODEL 

A linear regression model is based on certain assumptions as specified below. If a 
regression model fulfils the following assumptions, it is called the classical linear 
regression model (CLRM). The assumptions of CLRM are as follows: 

(i) The regression model is linear in parameters. It may or may not be 
linear in variables. For example, the equation given below is linear in 
parameters as well as variables as shown in equation (4.10) 

Yi = β1 + 𝛽ଶ𝑋௜ + ui     …(4.10) 

(ii) The explanatory variable is not correlated with the disturbance term u. 
This assumption requires that ∑ 𝑢௜𝑋௜ = 0 . In other words, the 
covariance between error term and explanatory variable is zero. This 
assumption is automatically fulfilled if X is non-stochastic. It requires 
that the 𝑋௜ values are kept fixed in repeated samples.  

(iii) The expected value or mean value of the error term u is zero. In 
symbols, 𝐸(𝑢௜|𝑋௜) = 0. It does not mean that all error terms are zero. 
It implies that the error terms cancel out each other.  

(iv) The variance of each 𝑢௜ is constant. In symbols, 𝑣𝑎𝑟(𝑢௜) = 𝜎ଶ. The 
conditional distribution of the error term has been displayed in Fig. 
4.4(a). The corresponding error variance for a specific value of the 
error term has been depicted in Fig. 4.4(b). From the figure you can 
make out that the error variance is constant at all levels of the X 
variable. It describes the case of ‘homoscedasticity’.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                               Fig 4.4 (a) Conditional Distribution of Error Term 𝒖𝒊 

 

PRL:𝐸(𝑌|𝑋௜)=𝛽ଵ + 𝛽ଶ 𝑋௜ 

-𝑢௜ 

+𝑢௜ 

X0 

Y 



 

 
 

51 

Simple Linear Regression 
Model: Estimation 

 

 

 

 

 

 

 

 

 

       

        

 
 

                  Fig 4.4 (b) Homoscedasticity (equal variance) 

Fig. 4.5 depicts the case of unequal error variance, i.e., heteroscedasticity. Here 
the variance of the error terms varies across the values of Xi. 

 

 

 

 

 

 

 

 

 

 

 

     

               Fig. 4.5: Case of Heteroscedasticity (Unequal Variance) 

(v) There is no correlation between the two error terms. This is the 
assumption of no autocorrelation.  

  𝑐𝑜𝑣൫𝑢௜, 𝑢௝൯ = 0 𝑖 ≠ 𝑗 

It implies that there is no systematic relationship between two error 
terms. This assumption implies that the error terms 𝑢௜  are random. 

PRF: 𝑌௜ = 𝛽ଵ + 𝛽ଶ 𝑋௜  
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Variables Case Since two error terms are assumed to be uncorrelated, any two Y 

values will also be uncorrelated, i.e., 𝑐𝑜𝑣൫𝑌௜, 𝑌௝൯ = 0.  

Fig 4.6(i) depicts the case of no autocorrelation. Fig 4.6(ii) depicts 
positive autocorrelation, and Fig 4.7(iii) shows the case of negative 
autocorrelation. 

 
 (i) No Autocorrelation  (ii) Positive Autocorrelation   (iii) Negative Autocorrelation 

Fig 4.6: Various Cases of Autocorrelation 

(vi) The regression model is correctly specified, that is, there is no 
specification error in the model. If certain relevant variable is not 
included or certain irrelevant variable is included in the regression 
model then we commit model specification error. For instance, 
suppose we study the demand for automobiles. If we take the price of 
automobiles only and do not include the income of the consumer 
income then there is some specification error. Similarly, if we do not 
take into account costs of adverting, financing, gasoline prices, etc., 
we will be committing model specification error (we will discuss the 
issue of specification error in Unit 13). 

4.5 ORDINARY LEAST SQUARES METHOD OF 
ESTIMATION 

As mentioned in Unit 1 of this course, we need to estimate the parameters of the 
regression model. There are quite a few methods of estimation of the parameters. 
In this course will discuss about two such methods: (i) Least Squares, and (ii) 
Maximum Likelihood. We discuss about the Ordinary Least Squares (OLS) 
method below. 

The Ordinary Least Squares (OLS) method estimates the parameters of a linear 
regression model by minimising the error sum of squares (ESS). In other words, 
it minimizes the sum of the squares of the differences between the observed 
dependent variable (𝑌௜) and the predicted or expected value of the dependent 
variable (𝑌෠௜).  
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In symbols,  

𝑒௜ = ൫ Yi − 𝑌෠௜൯  

𝑒௜
ଶ =  ൫ Yi − 𝑌෠௜൯

ଶ  

∑ 𝑒௜
ଶ ௡

௜ୀଵ = ∑ ൫ Yi − 𝑌෠௜൯
ଶ ௡

௜ୀଵ
       ... (4.11) 

In OLS method we minimise ∑ 𝑒௜
ଶ ௡

௜ୀଵ . 

We know that  

 𝑌෠௜ = 𝑏1 + 𝑏2𝑋𝑖        

If we substitute the value of 𝑌෠௜ in equation (4.11) we obtain 

∑ 𝑒௜
ଶ ௡

௜ୀଵ = 𝛴(𝑌𝑖 − 𝑏1 − 𝑏2𝑋𝑖)2  

The first order condition of minimization requires that the partial derivatives are 
equal to zero. Note that we have to decide on the values of 𝑏ଵ and 𝑏ଶ such that 
ESS is the minimum. Thus, we have take partial derivates with respect to 𝑏ଵ and 
𝑏ଶ. This implies that 

డఀ௘೔
మ

డ௕భ
= 0        … (4.13) 

and  

பఀ௘೔
మ

பୠమ
= 0        … (4.14)  

From equation (4.13) we have 

2𝛴(𝑌௜ − 𝑏ଵ − 𝑏ଶ𝑋௜) (−1) = 0 

By re-arranging terms in the above equation we obtain  

𝛴𝑌௜ = 𝑛𝑏ଵ + 𝑏ଶ𝛴𝑋௜       … (4.15) 

In equation (4.15), note that n is the sample size. 

From equation (4.14) we have  

2𝛴(𝑌௜ − 𝑏ଵ − 𝑏ଶ𝑋௜) (−𝑋௜) = 0  

By re-arranging terms in the above equation we obtain  

𝛴𝑋௜𝑌௜ = 𝑏ଵ𝛴𝑋ଵ + 𝑏ଶ𝛴𝑋௜
ଶ       … (4.16) 

Equations (4.15) and (4.16) are called normal equations. We have two equations 
with two unknowns (𝑏ଵ and 𝑏ଶ) .  

Thus, by solving these two normal equations we can find out unique values of 𝑏ଵ 
and 𝑏ଶ.  
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Variables Case By solving the normal equations (4.15) and (4.16) we find that  

𝑏ଵ = 𝑌ത − 𝑏ଶ𝑋̄        … (4.17)  

and 

𝑏ଶ = ௡ఀ௑௒ିఀ௑ఀ௒
௡ఀ௑మି(ఀ௑)మ = ఀ(௑೔ି௑̄)(௒೔ି௒ത)

ఀ(௑೔ି௑)మ   

Let us take the variables X and Y in deviation forms such that 

𝑥௜ = 𝑋௜ − 𝑋ത   𝑦௜ = 𝑌௜ − 𝑌ത 

Thus,  

𝑏ଶ = ఀ௫೔௬೔
ఀ௫೔

మ          … (4.18) 

As you can see from the formula for b2, it is simpler to write the estimator of the 
slope coefficient in deviation form. Expressing the values of a variable from its 
mean value does not change the ranking of the values, since we are subtracting 
the same constant from each value. It is crucial to note that b1 and b2 are 
expressed in terms of quantities computed from the sample, given by the formula 
in expressions in (4.17) and (4.18). 

We mention below the formulae for variance and standard deviation of the 
estimators b1 and b2  

𝑉𝑎𝑟(𝑏ଵ) = 𝜎௕భ
ଶ = ఀ௑೔

మ

௡ఀ௫೔
మ 𝜎ଶ      … (4.19) 

𝑆𝐸(𝑏ଵ) = ඥ𝑉𝑎𝑟(𝑏ଵ)       … (4.20) 

𝑉𝑎𝑟(𝑏ଶ) = 𝜎௕మ
ଶ = ఙమ

ఀ௫೔
మ  

𝑆𝐸(𝑏ଶ) = √var(𝑏ଶ)       … (4.21) 

σෝଶ = ఀ௘೔
మ

௡ିଶ
= ோௌௌ

௡ିଶ
= ோௌௌ

ௗ.௙.
      … (4.22) 

S.E. of the residual (𝑒௜) = √σෝଶ    … (4.23) 

The formulae mentioned in equations (4.19), (4.20), (4.21), (4.22) and (4.23) are 
the variance and standard errors of estimated parameters b1 and b2. 

Smaller the value of σෝଶ, closer is the actual Y value to its estimated value. Recall 
that any linear function of a normally distributed variable to itself normally 
distributed. If 𝑏ଵ and 𝑏ଶ are linear functions of normally distributed variable 𝑢௜ 
they themselves are normally distributed. Thus, 

𝑏ଵ~𝑁൫𝛽ଵ, 𝜎௕భ
ଶ ൯        … (4.24) 

𝑏ଶ~𝑁൫𝛽ଶ, 𝜎௕మ
ଶ ൯        … (4.25) 
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Check Your Progress 2 

1)  Distinguish between the error term and the residual by using appropriate 
diagram.  

.........................................................................................................................

.........................................................................................................................

.........................................................................................................................

.........................................................................................................................

......................................................................................................................... 

2)  Prove that the sample regression line passes through the mean values of X 
and Y. 

.........................................................................................................................

.........................................................................................................................

.........................................................................................................................

.........................................................................................................................

......................................................................................................................... 

4.6 ALGEBRAIC PROPERTIES OF OLS 
ESTIMATORS 

The OLS estimators b1 and b2 fulfil certain important properties.  

a) SRF obtained by OLS method passes through sample mean values of X 
and Y. This mainly implies that the point ( 𝑋̄, 𝑌̄)  passes through the 
Sample Regression Line. 

𝑌̄ = 𝑏ଵ + 𝑏ଶ𝑋̄        …(4.26) 
Mean value of residuals 𝑒̄ is always zero 𝑒̄ = ఀ௘೔

௡
 = 0. This implies that on 

an average, the positive and negative residual terms cancel each other.  

b) 𝛴𝑒௜𝑋௜ = 0       …(4.27) 

The sum of product of residuals 𝑒௜ and the values of explanatory variable 
X is zero, i.e., the two variables are uncorrelated.   

c) 𝛴𝑒௜𝑌෠𝑖 = 0       …(4.28) 

The sum of product of residuals 𝑒௜and estimated 𝑌෠௜ is zero, i.e., 𝑒௜𝑌෠𝑖 = 0.  

4.7 COEFFICIENT OF DETERMINATION 
Let us consider the regression model: 

𝑌௜ = 𝛽ଵ + 𝛽ଶ𝑋௜ + 𝑢௜  

Recall from equation (4.7) that 

𝑌௜ = 𝑌෠𝑖 + 𝑒௜          
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Variables Case If we subtract 𝑌ത from both sides of the above equation, we obtain  

(𝑌௜ − 𝑌ത) = (𝑌෠𝑖 − 𝑌ത) + (𝑌௜ − 𝑌෠𝑖)      … (4.29) 

[Since 𝑒௜ =  𝑌௜ − 𝑌෠𝑖] 

In equation (4.20) there are three terms: (i) (𝑌௜ − 𝑌ത) which is the variation in 𝑌௜, 
(ii) (𝑌෠𝑖 − 𝑌̄)  which is the explained variation, and (iii) (𝑌௜ − 𝑌෠𝑖)  which is the 
unexplained or residual variation. 

Now, let us use the lower case letters to indicate deviation from mean of a 
variable. Equation (4.30) can be written as 

𝑦௜ = 𝑦ො௜ + 𝑒௜        … (4.30) 

Since ∑ 𝑒௜ = 0, we have 𝑒̄ = 0. 

Therefore, we have 𝑌ത = 𝑌෠ത  , that is, the mean values of the actual Y and the 
estimated Y are the same.  

Recall that 

𝑌௜ = 𝑏ଵ + 𝑏ଶ𝑋௜ + 𝑒௜        ... (4.7) 

and 

𝑌̄ = 𝑏ଵ + 𝑏ଶ𝑋̄         …(4.26)  

If we subtract equation (4.26) from equation (4.7), we get  

𝑦௜ = 𝑏ଶ𝑥௜ + 𝑒௜         …(4.31) 

If find OLS estimator of (4.31), we obtain 

2ˆi iy b x . 

Therefore,  

𝑦௜ = 𝑦ො௜ + 𝑒௜        ... (4.32) 

Now let us takes squares of equation (4.32) on both sides and sum it over the 
sample. After re-arranging terms, we obtain 

2 2 2ˆi i iy y e            … (4.33) 

Or, equivalently, 
2 2 2 2

2i i iy b x e            … (4.34) 

Equation (4.34) can be expressed in the following manner; 

TSS = ESS + RSS       … (4.35) 

where  TSS = Total Sum of Squares  

 ESS = Explained Sum of Squares 

 RSS = Residual Sum of Squares 

Let us divide equation (4.35) by TSS. This gives us 
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1 = ாௌௌ
்ௌௌ

+ ோௌௌ
்ௌௌ

        … (4.36) 

Now, let us define  

𝑅ଶ = ாௌௌ
்ௌௌ

        … (4.37) 

The 𝑅ଶ is called the coefficient of determination. It is considered as measure of 
goodness of fit of a regression model. It is an overall ‘goodness of fit’ that tells us 
how well the estimated regression line fits the actual Y values.  

4.7.1 Formula of Computing R2 

Using the definition of 𝑅ଶ given at equation (4.37), we can write equation (4.36) 
as: 

1 = 𝑅ଶ + ோௌௌ
்ௌௌ

  = 𝑅ଶ + ఀ௘೔
మ

ఀ௬೔
మ      

Therefore, 

𝑅ଶ = 1 − ఀ௘೔
మ

ఀ௬೔
మ        … (4.38)  

You should note that 𝑅ଶ gives the percentage of TSS explained by ESS. Thus, if 
𝑅ଶ = 0.75, we can say that 75 per cent variation in the dependent variable is 
explained by explanatory variable in the regression model. The value of R2 or 
coefficient of determination lies between 0 and 1. This is mainly because it 
represents the ratio of explained sum of squares to total sum of squares.  

Now let us look into the algebraic properties of 𝑅ଶ and interpret it. When 𝑅ଶ = 0 
we have ESS = 1. It indicates that no proportion of the variation in the dependent 
variable is explained by ESS. If R2 = 1, the sample regression is a perfect fit. If 
R2 = 1, all the observations lie on the estimated regression line. A higher value of 
the R2 implies a better fit of a regression model. 

4.7.2 F-Statistic for Goodness of Fit 

The statistical significance of a regression model is tested by the F-statistic. By 
using the t-test we can test the statistical significance of a particular parameter of 
the regression model. For example, the null hypothesis 𝐻଴: 𝛽ଶ = 0 implies that 
there is no relationship between Y and X in the population. By using F-statistic, 
we can test the null hypothesis that all the parameters in the model are zero. 
Therefore, we use F-statistics for goodness of fit. 

F-statistics for goodness of fit is given by the following: 

𝐹 = ாௌௌ/(௞ିଵ)
ோௌௌ/(௡ି௞)

         … (4.39) 

where k is the number of parameters in regression equation and n is the sample 
size. 
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From equation (4.39) we know that 𝐹 = ாௌௌ/(௞ିଵ)
ோௌௌ/(௡ି௞)

. If we divide the numerator 

and the denominator by TSS, we have  

𝐹 = ாௌௌ/்ௌௌ/(௞ିଵ)
ோௌௌ/்ௌௌ/(௡ି௞)

= ோమ/(௞ିଵ)
(ଵିோమ)/(௡ି௞)

      … (4.40) 

Note that the F-statistic is an increasing function of 𝑅ଶ. An increase in the value 
of 𝑅ଶ means an increase in the numerator and a decrease in the denominator. 
Now let us explain the interpretation of F-static obtained in equation (4.41). The 
value obtained by applying equation (4.41) to a dataset is the calculated value of 
F or F-calculated. We compare this value with the tabulated value or critical 
value of F given at the end of the book. For comparison purpose the degrees of 
freedom are ((𝑘 − 1), (𝑛 − 𝑘)).  

If F-calculated is greater than F-critical we reject the null hypothesis 𝐻଴: 𝛽ଶ = 0. 
An implication of the above is that the independent variables explain the 
dependent variable. In other words, there exists a statistically significant 
relationship between Y and X.  

If F-calculated is less than F-critical we do not reject the null hypothesis 𝐻଴: 𝛽ଶ =
0. Thus there is no significant relationship between Y and X.  

4.7.4 Relationship between F and t2 

There is relationship between the F-statistic and the t-statistic in a regression 
model. Suppose, the number of explanatory variables k = 2.  

𝐹 = ாௌௌ/(௞ିଵ)
ோௌௌ/(௡ିଶ)

     

For the two-variable model, 

𝐹 = ாௌௌ/(ଶିଵ)
ோௌௌ/(௡ିଶ)

= ாௌௌ
ோௌௌ/(௡ିଶ)

       …(4.41) 

We know that ESS ෌ ൫𝑌෠௜ − 𝑌̄൯௡
௜ୀଵ

ଶ
 and 𝑅𝑆𝑆 = ෌ 𝑒௜

ଶ௡
௜ୀଵ  

Therefore, 

F =
෌ (𝑌෠𝑖ି௒̄)೙

೔సభ
మ

෌ ௘೔
మ (௡ିଶ)⁄೙

೔సభ
=

෌ ([௕భା௕మ௑೔]ି[௕భା௕మ௑̄])మ೙
೔సభ

஢ෝమ     ... (4.42) 

Estimation of error variance = σෝଶ = ோௌௌ
௡ି௞

= ఀ௘೔
మ

௡ିଶ
   …(4.43) 

𝐹 = ଵ
஢ෝమ . ෌ 𝑏ଶ

ଶ(𝑋௜ − 𝑋̄)ଶ௡
௜ୀଵ        …(4.44) 

We know that  

𝑣𝑎𝑟(𝑏ଶ) = ஢ෝమ

ఀ௫೔
మ  

Substituting equation (4.43) in equation (4.44) we get, 

𝐹 = ௕మ
మ

஢ෝమ = ௕మ
మ

௩௔௥(௕మ) = ௕మ
మ

[ௌா(௕మ)]మ = 𝑡ଶ      ... (4.45) 
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Therefore, the F-statistic is equal to square of the t-statistic (𝐹 = 𝑡ଶ). The above 
result, however, is true for the two-variable model only. If the number of 
explanatory variable increases in a regression model, the above result may not 
hold.  

Check Your Progress 3 

1)  Is it possible to carry out F-test on the basis of the coefficient of 
determination? Explain how.  

.........................................................................................................................

.........................................................................................................................

.........................................................................................................................

.........................................................................................................................

......................................................................................................................... 

2)  Can the coefficient of determination be greater than 1? Explain why. 

.........................................................................................................................

.........................................................................................................................

.........................................................................................................................

.........................................................................................................................

......................................................................................................................... 

4.8 LET US SUM UP  
In this unit we discussed about the classical linear regression model, which is 
based on certain assumptions. We distinguished between the population 
regression function and the sample regression function. We explained why a 
stochastic error term is added in a regression equation. We explained the meaning 
of each of the assumptions of the classical regression model. The procedure of 
obtaining OLS estimators of a regression model is given in the Unit. The unit 
further elaborated on the notion of goodness of fit and concept of R-squared. 

4.9  ANSWERS/ HINTS TO CHECK YOUR 
PORGRESS EXERCISES  

Check Your Progress 1 

1)  The objectives of carrying out a regression model could be as follows: 

 To estimate the mean or the average value of the dependent variable, 
given the values of independent variables. 

 To test the hypotheses regarding the underlying economic theory. For 
example, one may test the hypotheses that price elasticity of demand is 
(–)1.  

 To predict or forecast the mean value of the dependent variable given 
the value of the independent variable.  
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term added to the regression equation. The inclusion of the random error 
term leads to a difference between the expected value and the actual value 
of the dependent variable.  

3)  There are three reasons for inclusion of the error term in the regression 
model. See Sub-Section 4.2.2 for details. 

Check Your Progress 2 

1)  Go through Section 4.3. You should explain the difference between the 
error term and the residual by using Fig. 4.3. 

2)  In the OLS method we minimise 𝛴𝑒௜
ଶ by equating its partial derivates to 

zero. The condition డఀ ೔
మ

డ௕భ
= 0 gives us the first normal equation:  

 𝑌௜ = 𝑛𝑏ଵ + 𝑏ଶ𝛴𝑋௜. If we divide this equation by the sample size, n, we 
obtain 𝑌̄ = 𝑏ଵ + 𝑏ଶ𝑋̄ . Thus, the estimated regression passes through the 
point 𝑋̄, 𝑌̄ . 

Check Your Progress 3 

1)  Yes, we can carry out F-test on the basis of the 𝑅ଶ value. Go through 
equation (4.40).  

2)  The value of R2 or the coefficient of determination lies between 0 and 1. 
This is mainly because it represents the ratio of ESS to TSS. It indicates 
the proportion of variation in Y that has been explained by the 
explanatory variables. The numerator ESS cannot be more than the TSS. 
Therefore, R2 cannot be greater than 1.  

 

 



 
 

UNIT 5  SIMPLE REGRESSION MODEL: 
INFERENCE 

Structure  

5.0  Objectives  

5.1  Introduction 

5.2  Testing of Hypothesis 

5.3  Confidence Interval 

5.4  Test of Significance 

5.5  Analysis of Variance (ANOVA)  

5.6  Gauss Markov Theorem 

5.7  Prediction  
 5.7.1 Individual Prediction 
 5.7.2 Mean Prediction 

5.8  Let Us Sum Up 

5.9  Answers/Hints to Check Your Progress Exercises 

5.0  OBJECTIVES 
After reading this unit, you will be able to: 

 explain the concept of Testing of Hypothesis; 

 derive the confidence interval for the slope coefficient in a simple linear 
regression model; 

 explain the approach of ‘test of significance’ for testing the hypothesis on the 
estimated slope coefficient;  

 describe the concept of Analysis of Variance (ANOVA); 

 state the Gauss Markov Theorem with its properties; and 

 derive the confidence interval for the predicted value of Y in a simple 
regression model. 
 

5.1  INTRODUCTION 
In Unit 4 we discussed the procedure of estimation of the values of the 
parameters. In this unit, we focus upon how to make inferences based on the 
estimates of parameters obtained. We consider a simple linear regression model 
with only one independent variable. This means we have one slope coefficient 
associated with the independent variable and one intercept term. We begin by 
recapitulating the basics of ‘hypothesis testing’.  

                                                             
 Dr. Pooja Sharma, Assistant Professor, Daulat Ram College, University of Delhi  
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5.2  TESTING OF HYPOTHESIS 
Testing of hypothesis refers to assessing whether the observation or findings are 
compatible with the stated hypothesis or not. The word compatibility implies 
“sufficiently close” to the hypothesized value. It further indicates that we do not 
reject the stated hypothesis. The stated hypothesis is also referred to as ‘Null 
Hypothesis’ and it is denoted by H0. The null hypothesis is usually tested against 
the ‘alternative hypothesis’, also known as maintained hypothesis. The 
alternative hypothesis is denoted by H1. For instance, suppose the given 
population regression function is given by the equation:  

𝑌௜ = 𝛽ଵ + 𝛽ଶ𝑋௜ + 𝑢௜         ... (5.1) 

where 𝑋௜ is personal disposable income (PDI) and 𝑌௜ is expenditure. Now, the 
null hypothesis is:  

0: 20 H           ... (5.2) 

while the alternative hypothesis is: 

H1: β2 ≠ 0          ... (5.3) 

We deliberately set the null hypothesis to ‘zero’ in order to find out whether Y is 
related to X at all. If X really belongs to the model, we would fully expect to 
reject the zero-null hypothesis H0 in favour of the alternatives hypothesis 𝐻1. The 
alternative hypothesis implies that the slope coefficient is different from zero. It 
could be positive or it could be negative. Similarly, the true population intercept 
can be tested by setting up the null hypothesis: 

H1: β1 = 0        … (5.4) 

while the alternative hypothesis is: 

H1: β1 ≠ 0         … (5.5) 

The null hypothesis states that the true population intercept is equal to zero, while 
the alternative hypothesis states that it is not equal to zero. In case of both the 
null hypotheses,, i.e., for true population parameter or slope and the intercept, the 
null hypothesis as stated is a ‘simple hypothesis’. The alternative hypothesis is 
composite. It is also known as a two-sided hypothesis. Such a two-sided 
alternative hypothesis reflects the fact that we do not have a strong apriori or 
theoretical expectation about the direction in which the alternative hypothesis 
must move from the null hypothesis. However, when we have a strong apriori or 
theoretical expectations, based on some previous research or empirical work, 
then the alternative hypothesis can be one-sided or unidirectional rather than two-
sided. For instance, if we are sure that the true population value of slope 
coefficient is positive then the best way to express the two hypotheses is 

0:H 20   
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H1: β2 > 0 

Let us take an example from macroeconomics. The prevailing economic theory 
suggests that marginal propensity to consume is positive. This means that the 
slope coefficient is positive. Now, suppose that the given population regression 
function is estimated by using a sample regression by adopting Ordinary Least 
Squares estimate. Let us also suppose that the results of sample regression yield 
the value of estimated slope coefficient as 0814.0b2  . This numerical value 

will change from sample to sample. We know that  2 follows normal 

distribution, i.e., 𝑏ଶ~𝑁 ൬𝛽ଶ, ఙమ

ఀ௫೔
మ൰

 
. There are two methods of testing the null 

hypothesis that the true population slope coefficient is equal to zero. The next 
two sections of this unit describe the two methods of testing of hypothesis of 
regression parameters.  

5.3  CONFIDENCE INTERVAL 

In this section, we shall derive the confidence interval for the slope parameter in 
equation (5.1) above. Note that the confidence interval approach is a method of 
testing of hypothesis. This is because it refers to the probability that a population 
parameter falls within the set of critical values from the Table. We make two 
assumptions, viz. (i) , the level of significance on probability of committing 

type I error, is fixed at 5% level and (ii) the alternative hypothesis is two sided. 
From the t-table (given at the end of the book) we find the critical value of t at (n 
– k) degrees of freedom (d.f.) at 𝛼 = 5% is: 

  )6.5(...95.0306.2306.2  tP  

Substituting for ‘t’, equation (5.6) can be re-written as: 

)7.5(...95.0306.2
/ˆ

306.2
2

22 



















ix
bP


  

Hence, the probability that t value lies between the limits –2.306, +2.306) is 0.95 
or 95%. These are the critical t values. Substituting the value of t into equation 
(5.6) and rearranging the terms in (5.7) we get: 

      95.0bSE306.2bbSE.306.2bP 22222   
The above equation provides a 95% confidence interval for 2 . Such a 

confidence interval is known as the region of acceptance (for H0) and the area 
outside the confidence interval is known as the region of rejection [for (𝐻0)]. If 
this interval includes the value of 2 we do not reject the hypothesis; but if it lies 

outside the confidence interval, we reject the null hypothesis.  
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Check Your Progress 1 [answer questions in about 50-100 words] 

1) State the difference between a simple and a composite hypothesis. 

 .............................................................................................................................

 .............................................................................................................................

 ............................................................................................................................. 

 ............................................................................................................................. 

2) Null hypothesis is the indicator of simple and composite hypothesis. Is this 
statement true? Justify. 

 .......................................................................................................................

 .......................................................................................................................

 ....................................................................................................................... 

 ............................................................................................................................. 

3) What is meant by a ‘confidence interval’? 

 .............................................................................................................................

 .............................................................................................................................

 .............................................................................................................................

 ............................................................................................................................. 
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4) Why do we say that the interval contains the hypothesized value of true 
population parameter? 

 .............................................................................................................................

 .............................................................................................................................

 ............................................................................................................................. 

 ............................................................................................................................. 

5.4  TEST OF SIGNIFICANCE 

Test of significance approach is another method of testing of hypothesis. The 
decision to accept or reject H0 is made on the basis of the value of t- test. It is 
computed by the statistic from the sample data as:  

   )8.5(...
2

22

bSE
bt 

  

Equation (5.8) follows t-distribution with (n – k) degrees of freedom. The null 
hypothesis that we are testing here is:  

*
220 :H          … (5.9)  

Note that *
2 is some specific numerical value of 2 . Thus, the computed value of 

the test-statistic ‘t’ will be like:  

  )10.5(...
2

*
22

bSE
bt 

  

= [(estimated value) – (hypothesized value)] ÷ (standard error of estimator) 

This can be computed from sample data as all values are available. The t value 
computed from (5.10) follows t distribution with (n – k) degrees of freedom 
(d.f.). This testing procedure is called the t-test. Fig. 5.3 depicts the region of 
rejection and the region of acceptance. One method of deciding on the result of 
the testing is to compare the computed value with the tabulated value (also called 
the ‘critical value’). If the computed value of t is greater than the critical value of 
t then we reject the null hypothesis. This means we are rejecting the hypothesis 
that the true population parameter, or the slope coefficient, is zero. It implies that 
the explanatory variable plays a significant role in determining dependent 
variable. On the other hand, if the computed t value is less than critical value of t, 
then we do not reject the null hypothesis that the true value of the population 
parameter (or the slope coefficient) is zero. Not rejecting the null hypothesis 
implies that the value of slope coefficient is zero and that the explanatory 
variable does not play any significant role in determining the dependent variable.  
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Fig 5.3: Test of Significance 

In present times, when the results of the regression are obtained by computer, we 
usually get the p-value for the computed statistic. The p-value indicates the 
probability that the null hypothesis is true. If p < 0.05, we reject the null 
hypothesis and accept the alternative hypothesis. If p > 0.05, then we accept the 
null hypothesis. This means we base our test result at 5 percent level of 
significance. This also means that in 95 out of 100 independent samples, our 
result of the test will be similar. In other words, in 5 out of 100 cases, we could 
be coming to a wrong conclusion. 

5.5  ANALYSIS OF VARIANCE (ANOVA) 
Analysis of Variance (ANOVA) is a statistical tool used to analyse the given data 
for variations caused by several factors. These factors are divided into two parts: 
one is called the deterministic (or the systematic) part and the other is called the 
random part. This method of analysing the variance was developed by Ronald 
Fisher in 1918. Hence, this is also known as Fisher’s analysis of variance. The 
ANOVA method separates the observed variance in the data into different 
components. It is used to determine the influence that the independent variables 
have on the dependent variable in a regression analysis. In a regression analysis 
ANOVA identifies the variability within a regression. Note that the total 
variability of dependent variable can be expressed in two parts as follows:  

(Yi – 𝑌ሜ ) = (Yi – 𝑌෠௜) + (𝑌෠௜ – 𝑌ሜ ) = (𝑌෠௜ – 𝑌ሜ  )+ (Yi – 𝑌෠௜)   ... (5.11) 

Equation (5.11) distributes the total variation in the dependent variable Y into two 
parts, i.e., the variation in mean and the residual value. Squaring each of the 
terms in equation (5.11) and adding over all the n observations, we get the 
following equation.  

∑(Yi – 𝑌)ሜ 2 = ∑(𝑌෠௜ – 𝑌ሜ )2 + ∑(Yi – 𝑌෠௜)2     ... (5.12) 

The above equation can be written as: TSS = ESS + RSS where TSS is the Total 
Sum of Squares, ESS is the Explained Sum of Squares, and RSS is the Residual 
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Sum of Squares. The RSS is also called the ‘Sum of Squares due to Error (SSE)’. 
The ratio ESS / TSS is defined as the coefficient of determination R2. The R2 
indicates the proportion of total sum of squares explained by the regression 
model. An ANOVA analysis is carried out with the help of a table (Table 5.1). 
From such a table of analysis of variance, the F-statistic can be computed as: 
ESS/RSS. This F-statistic is used to test the overall level of significance of the 
model. The null hypothesis and the alternative hypothesis for testing the overall 
significance using ANOVA are given by:  

H0: Slope coefficient is zero 

H1: Slope coefficient is not equal to zero. 

Table 5.1: Format of a Typical ANOVA Table 

Sources Degrees of 
Freedom 
(df) 

Sum of 
Squares 

Mean 
Square 

F Statistics =  

ESS /RSS 

Model 1 ∑(𝑌෠௜ – 𝑌)ሜ  2  ESS / df  

Error n-2 ∑(Yi – 𝑌෠௜)2 RSS / df  

Total n-1 ∑(Yi – 𝑌)ሜ 2 TSS / df  
 

F = ாௌௌ/(௞ିଵ) 
ோௌௌ/(௡ି௞)

 gives the observed value. The F-critical value at (k-1) and (n-k) 

degrees of freedom can be located from the statistical table. When the computed 
F is > than F-critical, the null hypothesis is rejected. Since the alternative 
hypothesis is accepted, the inference is that the explanatory variable plays a 
crucial role in determining the dependent variable. Similarly, when the F 
computed is < than the F-critical, the null hypothesis is not rejected. In this case, 
the hypothesis that the explanatory variable plays no role in determining the 
dependent variable is accepted. Again, here also, we can base our inference based 
on the p-value. This means if p < 0.05, we reject the null hypothesis. 

Check Your Progress 2 [answer questions in about 50-100 words] 

1) What is ment by the ‘test of significance approach’ to hypothesis testing? 
 .............................................................................................................................

 .............................................................................................................................

 ............................................................................................................................. 

 .............................................................................................................................

 ............................................................................................................................. 

 ............................................................................................................................. 
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2) What does the ‘level of significance’ indicate?  
 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 ....................................................................................................................... 

3) What purpose does an ANOVA serve? 

 .............................................................................................................................

 .............................................................................................................................

 .............................................................................................................................

 ............................................................................................................................. 

4) Distinguish between t-test in a regression model. 
 .............................................................................................................................

 .............................................................................................................................

 .............................................................................................................................

 ............................................................................................................................. 

5.6  GAUSS-MARKOV THEOREM 
This is an important theorem which gives us the condition under which the least 
squares estimator is the best estimator. When the assumptions of the classical 
linear regression model are not violated, the least-squares estimator fulfils certain 
optimum properties. These properties are summarised in the Gauss-Markov 
theorem which is stated as follows:  

Gauss-Markov Theorem: Given the assumptions of classical linear regression 
model, the least-squares estimators, have minimum variance, in the class of all 
unbiased linear estimators, i.e., they are BLUE [best linear unbiased 
estimator(s)]. The characteristic of BLUE implies that the estimator obtained by 
the OLS method has the following properties. 

a) It is linear, i.e., the estimator is a linear function of a random variable (such 
as the dependent variable Y in the regression model). 

b) It is unbiased, i.e., its average or expected value is equal to true value [E (b2) 
= β2].  

c) It has minimum variance in the class of all such linear unbiased estimators. In 
other words, such an estimator with the least variance is an efficient 
estimator. 

Thus, in the context of regression, the OLS estimators are BLUE. This is the 
essence of Gauss-Markov Theorem.  
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5.7  PREDICTION  
So far we have spoken about estimation of population parameters. In the two 
variable model, we derived the OLS estimators of the intercept (𝛽ଵ) and slope 
(𝛽ଶ) parameters. Prediction refers to estimation of the dependent value at a 
particular value of the independent variable. In other words, we use the estimated 
regression model to predict the value of Y corresponding to a given value of X.   

Prediction is important to us for two reasons: First, it helps us in policy 
formulation. On the basis of the econometric model, we can find out the impact 
of changes in the explanatory variable on the dependent variable. Second, we can 
find out the robustness of our estimated model. If our econometric model is 
correct, the error between forecast value and actual value of the dependent 
variable should be small. Prediction could be of two types, as mentioned below.  

5.7.1 Individual Prediction 

If we predict an individual value of the dependent variable corresponding to a 
particular value of the explanatory variable, we obtain the individual prediction. 
Let us take a particular value of X, say X = X0. Individual prediction of Y at X = 
X0 in obtained by:  

𝑌଴ = 𝛽ଵ + 𝛽଴𝑋଴ + 𝑢଴       … (5.13) 

We know that 𝑏ଵ and 𝑏ଶ are unbiased estimators of 1 and 2 . Hence, 0Ŷ is an 
unbiased predictor of E (Y│X0).  

Therefore, 

0210 XbbŶ         … (5.14) 

Since 0Ŷ  is an estimator, the actual value 𝑌଴  will be different from 𝑌෠଴, and there 
will be certain ‘prediction error’. 

The prediction error in ൣ𝑌෠଴ − 𝑌଴൧ is given by 

𝑌෠଴ − 𝑌଴ = (𝑏ଵ + 𝑏ଶ𝑋଴) − (𝛽ଵ + 𝛽ଶ𝑋଴ + 𝑢଴)     … (5.15) 

We can re-arrange the terms in equation (5.15) to obtain 

𝑌෠଴ − 𝑌଴ = (𝑏ଵ − 𝛽ଵ) + (𝑏ଶ − 𝛽ଶ)𝑋଴ − 𝑢଴ 

Let us take expected value of (5.15). 

E(𝑌෠଴ − 𝑌଴) = 𝐸(𝑏ଵ − 𝛽ଵ) + 𝐸(𝑏ଶ − 𝛽ଶ)𝑋଴ − 𝐸(𝑢଴)   … (5.16) 

We know that 𝐸(𝑏ଵ) = 𝛽ଵ, 𝐸(𝑏ଶ) = 𝛽ଶ and 𝐸(𝑢଴) = 0. 

Thus, we find that expected value of prediction error is zero. 
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Now let us find out the variance of the prediction error.  

The variance of the prediction error, 

 V(𝑌෠଴ − 𝑌଴) = 𝑉(𝑏ଵ − 𝛽ଵ) + 𝑉(𝑏ଶ − 𝛽ଶ)𝑋଴ 

+2 𝑋଴ 𝑐𝑜𝑣(𝑏ଵ − 𝛽ଵ, 𝑏ଶ − 𝛽ଶ) + 𝑉(𝑢଴)    … (5.17) 

We know that 

𝑉(𝑏ଵ) = 𝜎ଶ ఀ௑೔
మ

௡ఀ௫೔
మ       … (5.18) 

𝑉(𝑏ଶ) = ఙమ

ఀ௫೔
మ        … (5.19) 

𝐶𝑜𝑣(𝑏ଵ, 𝑏ଶ) = −𝑋̄ ൬ ఙమ

ఀ௫೔
మ൰      … (5.20) 

By combining the above three equations and re-arranging terms, we obtain  

𝑉൫𝑌෠଴−𝑌଴൯ = 𝜎ଶ ൤1 + ଵ
௡

+ (௑బି௑̄)
ఀ௫೔

మ ൨          ... (5.21) 

Thus,  𝑌଴ follows normal distribution with mean 𝛽ଵ + 𝛽଴𝑋଴ and variance 

𝜎ଶ ൤1 + ଵ
௡

+ (௑బି௑̄)మ

ఀ௫೔
మ ൨.  

If we take estimator for  𝜎ଶ, then we have 

𝑡 = ௒෠బି(ఉభାఉబ௑బ)
ௌா(௒෠బ)         ... (5.22) 

On the basis of (5.22) we can construct confidence interval for 𝑌෠଴. Since  

𝑡 = ௒෠బିா(௒ ఈబ⁄ )
ௌா(௒෠బ)  , we have 

𝑃ൣ−𝑡ఈ ଶ⁄ ≤ 𝑡 ≤ 𝑡ఈ ଶ⁄ ൧ = 1 − 𝛼    

Thus, the confidence interval of 𝑌෠଴ is 

𝑃ൣ(𝑏ଵ + 𝑏ଶ𝑋଴) − 𝑡ఈ ଶ⁄ 𝑆𝐸൫𝑌෠଴൯ ≤ (𝛽ଵ + 𝛽ଶ𝑋଴) ≤ (𝑏ଵ + 𝑏ଶ𝑋଴) + 𝑡ఈ ଶ⁄ 𝑆𝐸൫𝑌෠଴൯൧ =
1 − 𝛼           …(5.23) 

Let us lok into equation (5.21) again. We see that the variance of  𝑌෠଴ increases 
with (𝑋଴ − 𝑋̄)ଶ. Thus, there is an increase in variance if 𝑋଴ is farther away from 
𝑋̄, the mean of the sample on the basis of which 𝑏ଵand 𝑏ଶare computed. In Fig. 
5.4 we depict the confidence interval for 𝑌෠଴ (see the dotted line) 
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Fig. 5.4:Confidence Interval for Individual Prediction 

5.7.2  Mean Prediction 

It refers to prediction of expected values of 𝑌଴, not the individual value. In other 
words, we are predicting the following: 

 𝑌෠଴ = 𝑏ଵ + 𝑏ଶ𝑋଴         

Thus the error term 𝑢଴ is not added. 

In the case of mean prediction, the prediction error in ൣ𝑌෠଴ − 𝑌଴൧ is given by 

𝑌෠଴ − 𝑌଴ = (𝑏ଵ + 𝑏ଶ𝑋଴) − (𝛽ଵ + 𝛽ଶ𝑋଴)     … (5.24) 

We can re-arrange the terms in equation (5.24) to obtain 

𝑌෠଴ − 𝑌଴ = (𝑏ଵ − 𝛽ଵ) + (𝑏ଶ − 𝛽ଶ)𝑋଴ 

If we take the expected value of (5.24) 

E(𝑌෠଴ − 𝑌଴) = 𝐸(𝑏ଵ − 𝛽ଵ) + 𝐸(𝑏ଶ − 𝛽ଶ)𝑋଴    … (5.25) 

Thus, we find that expected value of prediction error is zero. 

Now let us find out the variance of the prediction error in thecase of mean 
prediction.  

The variance of the prediction error, 

 V(𝑌෠଴ − 𝑌଴) = 𝑉(𝑏ଵ − 𝛽ଵ) + 𝑉(𝑏ଶ − 𝛽ଶ)𝑋଴ 

+2 𝑋଴ 𝑐𝑜𝑣(𝑏ଵ − 𝛽ଵ, 𝑏ଶ − 𝛽ଶ)      … (5.26) 

If we compare equations (5.17) and (5.26) we notice an important change – the 
term 𝑉(𝑢଴) is not there in (5.26). Thus the variance of the prediction error in the 
case of mean prediction is less compared to individual prediction.  There is a 
change in the variance of 𝑌෠଴ in the case of mean prediction, however.  Variance 
of the prediction error, in the case of mean prediction is given by 

0 

Y 

X 
𝑋ത 

Regression Line 

Confidence Interval  
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𝑉൫𝑌෠଴−𝑌଴൯ = 𝜎ଶ ൤ଵ
௡

+ (௑బି௑̄)
ఀ௫೔

మ ൨          ... (5.27) 

Again, there is an increase in the variance of prediction error if 𝑋଴ is farther away 
from 𝑋̄, the mean of the sample on the basis of which 𝑏ଵand 𝑏ଶare computed. It 
will look somewhat like the confidence interval we showed in Fig. 5.4, but the 
width of the confidence interval will be smaller.  

An inference we draw from the above is that we can predict or forecast the value 
of the dependent variable, on the basis of the estimated regression equation, for a 
particular value of the explanatory variable (𝑋଴). The reliability of our forecast, 
however, will be lesser if the particular value of X is away from 𝑋̄.  
 

Check Your Progress 3 [answer questions within the given space in about 50-
100 words] 

1) State Gauss-Markov Theorem.  
 .............................................................................................................................

 .............................................................................................................................

 .............................................................................................................................

 .............................................................................................................................

 ............................................................................................................................. 

2) Differentiate between the two types of prediction possibilities in forecasting. 

 .............................................................................................................................

 .............................................................................................................................

 .............................................................................................................................

 .............................................................................................................................

 ............................................................................................................................. 

5.8 LET US SUM UP 
This unit explains how to make inference on the estimated results of a simple 
regression model. After presenting an account of hypothesis testing to 
recapitulate the basics, it explains the two approaches for deciding on the 
validation of estimated results. The two methods are: confidence interval 
approach and test of significance approach. The testing of overall significance of 
the model is explained by the technique of ANOVA. Here, the application of F –
statistic is explained. The assumptions of classical linear regression model leads 
to the estimated parameters enjoying some unique properties. In light of this, the 
estimates are called BLUE (best linear unbiased estimates). This fact is stated in 
a result called the Gauss Markov theorem. The unit concludes with a detailed 
account of the concept of forecasting. This is once again a technique in which we 
have presented a confidence interval wherein the predicted or forecasted value of 
the dependent variable is shown to lie. 
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5.9  ANSWERS/HINTS TO CHECK YOUR 
 PROGRESS EXERCISES 
Check Your Progress 1 

1) In case of both the null hypothesis (, i.e., for true population parameters of 
slope and intercept), the null hypothesis are a simple hypothesis, whereas the 
alternative hypothesis are composite. The former is usually equated to zero 
(unless equated to a known value) and the latter in stated in inequality terms. 
The latter is also known as two-sided hypothesis when stated in ‘not equal to’ 
terms. It is considered one sided if stated in > or < terms. 
 

2) False. It is the alternative hypothesis that decides whether it is composite or 
one-sided hypothesis. If the alternative hypothesis is stated as not equal to zero 
then it is composite or two-tailed test. Otherwise, i.e., if the alternative 
hypothesis is stated in positive or negative terms, then it will be a one-sided 
test.  
 

3) The confidence interval approach is a method of testing of hypothesis. It refers 
to the probability that a population parameter falls within the set of critical 
values drawn from the Table.  

 

4) We say that the hypothesised value is contained in the interval because the 
value of the interval depends upon the sample or the data used for estimation. 
The true population parameter value is fixed but the interval changes 
depending on the sample.  

Check Your Progress 2  

1) The test of significance approach is another method of testing of hypothesis. 
The decision to accept or reject H0 is made on the basis of the value of test 
statistic obtained from the sample data. This test statistic is given by: 

  d.f.)1(nwithondistributifollowsitand
2

22 


 t
bSE

bt 
 

2) It is a measure of the strength of evidence when the null hypothesis is 
rejected It concludes that the effect is statistically significant. It is the 
probability of rejecting the null hypothesis when it is true. This is a grave 
error to commit and hence is chosen in a small measure like 1% or 5%. 
 

3) Analysis of Variance (ANOVA) is a technique or a tool used to analyse the 
given data in two ways or direction. One is attributed to the deterministic 
factors, also called the explained part or the systematic part. The other is 
called the random or the unexplained part. This method of analysis of 
variance method was developed by Ronald Fisher in 1918.  
 

4) The t-test is used to test the significance of estimated individual coefficients. 
It is distributed as t with (k – 1) degrees of freedom (d.f.). where k is the 
number of parameters estimated including the intercept term. Thus, for a 
simple linear regression, it is [n – (2 – 1)] = (n –1). The F-distribution is used 
for testing the significance of the whole model. It has two parameters. The 
d.f. for a F test, in general is (k – 1) and (n – k). K includes the intercept term. 
Hence, in a simple linear regression, the d.f. for F is: (2 – 1) and (n – 2) or 1 
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and (n – 2) Note that in a simple linear regression, the t test and the F test are 
equivalent because the number of independent variable is only one.  

Check Your Progress 3  

1) The Gauss-Markov theorem states that the Ordinary Least Squares (OLS) 
estimators are also the best linear unbiased estimator (BLUE). The presence 
of BLUE property implies that the estimator obtained by the OLS method 
retains the following properties: (i) it is linear, i.e., the estimator is a linear 
function of a random variable such as the dependent variable Y in the 
regression model; (ii) it is unbiased, i.e., its average or expected value is 
equal to the true value in the sense that E (b2) = β2; (iii) it has minimum 
variance in the class of all such linear unbiased estimators. Such an estimator 
with the least variance is also known as an efficient estimator. 
 

2) Prediction implies predicting two types of values: prediction of conditional 
mean, i.e., E (Y│X0) → a point on the population regression line. This is 
called as the Mean Prediction. Prediction of individual Y value, 
corresponding f (X0) is called the Individual Prediction. 

 



UNIT 6 EXTENSION OF TWO VARIABLE 
REGRESSION MODELS 

Structure   

6.0  Objectives  

6.1  Introduction 

6.2  Regression through the Origin 

6.3  Changes in Measurement Units  

6.4 Semi-Log Models 

6.5  Log-linear Models 

6.6  Choice of Functional Form  

6.7  Let Us Sum Up 

6.8  Answers/Hints to Check Your Progress Exercises 

6.0  OBJECTIVES 
After going through this Unit, you should be in a position to  

 interpret regression models passing through the origin; 

 explain the impact of changes in the unit of measurement of dependent and 
independent variables on the estimates; 

 interpret parameters in semi-log and log-linear regression models; and 

 identify the correct functional form of a regression model. 

6.1  INTRODUCTION 
In the previous two Units we have discussed how a two variable regression 
model can be estimated and how inferences can be drawn on the basis of the 
estimated regression equation. In this context we discussed about the ordinary 
least squares (OLS) method of estimation. Recall that the OLS estimators are the 
best linear unbiased estimators (BLUE) in the sense that they are the best in the 
class of linear regression models. 

The two variable regression model has the function as follows: 

𝑌௜ = 𝛽ଵ + 𝛽ଶ𝑋௜ + 𝑢௜        … (6.1) 
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where Y is the dependent variable and X is the independent variable. We added a 
stochastic error term (𝑢௜) to the regression model. We cited three reasons for 
inclusion of the error term in the regression model: (i) it takes care of the 
excluded variables in the model, (ii) it incorporates the unpredictable human 
nature into the model, and (iii) it absorbs the effects measurement error, incorrect 
function form, etc. 

We assumed that the regression model is correctly specified. All relevant 
variables are included in the model. No irrelevant variable is included in the 
regression model. In this Unit we will continue with the two variables case as in 
the previous two units. We also continue with the same assumptions, as 
mentioned in Unit 4.  

Let us look into the regression model given at equation (6.1). We observe that the 
regression model is linear in parameters. We do not have complex forms of the 
parameters such as 𝛽ଶ

ଶ or 𝛽ଵ𝛽ଶ as parameters. Further, the regression model is 
linear variables. We do not have 𝑋ଶ or log 𝑋 as explanatory variable. Can we 
have these sorts of variables in a regression model? How do we interpret the 
regression model if such variables are there? We will extend the simple 
regression model given in equation (6.1) and explain how the interpretation of the 
model changes with the modifications.  

6.2  REGRESSION THROUGH THE ORIGIN 
Let us look into the simple regression model given at equation (6.1). There are 
two parameters in the regression model: 𝛽ଵ and 𝛽ଶ. The intercept parameter is 𝛽ଵ 
and the slope parameter is 𝛽ଶ . The intercept 𝛽ଵ  indicates the value of the 
dependent variable when the explanatory variable takes the value zero, i.e., 
𝐸(𝑌଴|𝑋଴) = 𝛽ଵ.  

Suppose regression model takes the following form: 

𝑌௜ = 𝛽ଶ𝑋௜ + 𝑢௜        … (6.2) 

In equation (6.2) there is only one slope parameter, 𝛽ଶ. There is no intercept. The 
implication is that the regression line passes through the origin. The population 
regression function is 𝑌 = ௗ𝛽ଶ𝑋௜ + 𝑢௜  and the sample regression function is 
𝑌௜ = 𝑏ଶ𝑋௜ + 𝑒௜. 

Now let us apply OLS method and find out the OLS estimator 𝑏ଶ. As you know 
from Unit 4, in OLS method we minimise the error sum of squares (ESS). Thus 
we minimise 

 𝐸𝑆𝑆 =  ∑𝑒௜
ଶ = ∑(𝑌௜ − 𝑏ଶ𝑋௜)ଶ      … (6.3) 

We take derivative of the ESS and equate it to zero. 
ௗௗ∑௘೔

మ

ௗ௕మ
= 0        … (6.4) 

ௗௗ∑௘೔
మ

ௗ௕మ
= 2 ∑(𝑌௜ − 𝑏ଶ𝑋௜)(−𝑋௜) = 0      … (6.5) 

This implies 
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−2ௗ∑𝑒௜(𝑋௜𝑌௜ − 𝑏ଶ𝑋௜
ଶ) = 0  

∑𝑋௜𝑌௜ − 𝑏ଶ∑𝑋௜
ଶ = 0  

𝑏ଶ = ∑௑೔௒೔
∑௑೔

మ          … (6.6) 

The estimator given at (6.6) is unbiased. The variance of the estimator is given by 
𝑣𝑎𝑟(𝑏ଶ) = ఙమ

ఀ௑೔
మ        … (6.7) 

Let us compare the above estimator with the estimator for the regression model 
𝑌௜ = 𝛽ଵ + 𝛽ଶ𝑋௜ + 𝑢௜ (see equation (4.18) in Unit 4) 

𝑏ଶ = ఀ௫೔௬೔
ఀ௫೔

మ          … (6.8) 

and  

𝑣𝑎𝑟(𝑏ଶ) = ఙమ

ఀ௫೔
మ        … (6.9) 

Note that in equation (6.6) the variables are not in deviation form. Thus when we 
do not have an intercept in the regression model, the estimator of the slope 
parameter is different from that of a regression model with intercept. Both the 
estimators will be the same if and only if 𝑋ത = 0. 

We present a comparison between the regression model with intercept and 
without intercept in Table 6.1.  

Table 6.1: Features of Regression Model without Intercept 

Regression Model with Intercept Regression Model without Intercept 

𝑏ଶ =
∑𝑥௜𝑦௜

∑𝑥௜
ଶ  𝑏ଶ =

∑𝑋௜𝑌௜

∑𝑋௜
ଶ  

var(𝑏ଶ) =
𝜎ଶ

∑𝑥௜
ଶ var(𝑏ଶ) =

𝜎ଶ

∑𝑋௜
ଶ 

σෝଶ =
∑𝑒௜

ଶ

𝑛 − 2
 σෝଶ =

∑𝑒௜
ଶ

𝑛 − 1
 

2R is non-negative 2R can be negative 

The estimated regression model is given as 

𝑌෠௜ = 𝑏ଶ𝑋௜         … (6.10) 

Note that the coefficient of determination 𝑅ଶ  is not appropriate for regression 
models without the intercept. If the intercept in a regression model is not 
statistically significant, then we can have regression through the origin. 
Otherwise, it leads to specification error. There is omission of a relevant variable.  
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6.3  CHANGES IN MEASUREMENT UNITS  
Suppose you are given time series data on GDP and total consumption 
expenditure of India for 30 years. You are asked to run a regression model with 
consumption expenditure as dependent variable and income as the independent 
variable. The objective is to estimate the aggregate consumption function of 
India. Suppose you took GDP and Consumption Expenditure in Rs. Crore. The 
estimated regression equation you found is  

 𝑌௜ = 237 + 0.65𝑋௜        … (6.11) 

When you presented the results before your seniors, they pointed out that the 
measure of GDP and consumption expenditure should have been in Rs. Million, 
so that it is comprehensible outside India also. If you re-estimate the results by 
converting the variables, will estimates be the same? Or, do you expect some 
changes in the estimates? Let us discuss the issue in details. 

Suppose we transform both the dependent and independent variables as follows:  

 𝑌௜
∗ = 𝑤ଵ𝑌௜ and 𝑋௜

∗ = 𝑤ଵ𝑋௜      … (6.12) 

The regression model (6.1) can be transformed as follows: 

𝑌௜
∗ = 𝛽ଵ + 𝛽ଶ𝑋௜

∗ + 𝑢௜        … (6.13) 

Estimation of equation (6.13) by OLS method gives us the following estimators 

𝑏ଵ
∗ = 𝑌ത∗ − 𝑏ଶ

∗𝑋ത∗        … (6.14) 

𝑏ଶ
∗ = ∑ ௫೔

∗௬೔
∗

∑ ௫೔
∗మ           … 

(6.15) 

In a similar manner you can find out the variance of 𝑏ଵ
∗ and 𝑏ଶ

∗, and the estimator 
of the error variance. 

From equation (6.15) we can find out that  

𝑏ଶ
∗ = ௪భ

௪మ
𝑏ଶ         … (6.16) 

and 

𝑏ଵ
∗ = 𝑤ଵ𝑏ଵ         … (6.17) 

Now let us look into the implications of the above. 

(i) Let us begin with the dependent variable, 𝑌௜ . Suppose 𝑌௜ is doubled 
(𝑤ଵ = 2) and 𝑋௜ is unchanged (𝑤ଶ = 1). What will happen to 𝑏ଵ and 
𝑏ଶ ?  Substitute the values of 𝑤ଵ  and 𝑤ଶ  in equations  (6.16) and 
(6.17). We find that both the estimates are doubled. Thus, if the 
dependent variable is multiplied by a constant c, then all OLS 
coefficients will be multipled by c. 

(ii) Now let us take the case of the independent variable. Suppose 𝑋௜ is 
doubled (𝑤ଶ = 2) and 𝑌௜ is unchanged (𝑤ଵ = 1).   On substitution of 
the values of 𝑤ଵ and 𝑤ଶ  in equations (6.16) and (6.17) we find that 
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the slope coefficient (𝑏ଶ) is halved, but the intercept (𝑏ଵ) remains 
unchanged.  

(iii) If we double both the variables 𝑋௜ and 𝑌௜, then the slope coefficient 
(𝑏ଶ)will remain unchanged, but the intercept will change. Remember 
that the intercept is changed by a change in the scale of measurement 
of the dependent variable.  

Now the question arises: Will there be a change in the t-ratio and F-value of 
the model? No, the t and F statistics are not affected by a change in the scale 
of measurement of any variable.  

Check Your Progress 1 

1) Under what condition should we run a regression through the origin?  

 .......................................................................................................................
 .......................................................................................................................
 .......................................................................................................................
 ....................................................................................................................... 
 .......................................................................................................................
 ....................................................................................................................... 

2) What are the implications of a regression model through origin? 

 .......................................................................................................................
 .......................................................................................................................
 .......................................................................................................................
 .......................................................................................................................
 ....................................................................................................................... 

3) What are the implications on the estimates if there is a change in the 
measurement scale of the explanatory variable?  

.......................................................................................................................
 .......................................................................................................................
 .......................................................................................................................
 .......................................................................................................................
 ....................................................................................................................... 

4) What are the implications on the estimates if there is a change in the 
measurement scale of the dependent variable?  

.......................................................................................................................
 .......................................................................................................................
 .......................................................................................................................
 .......................................................................................................................
 ....................................................................................................................... 
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6.4  SEMI-LOG MODELS  
In some of the cases the regression model is non-linear, but by taking logarithm 
on both sides of the regression equation, we get a linear model. If a model is non-
linear , but becomes linear after transformation of its variables, then the model is 
said to be intrinsically linear . Thus, semi-log and log-linear models are 
intrinsically linear models. We discuss about the semi-log model in this section. 
We will discuss about the log-linear model in the next section.  

Let us begin with a functional form as follows: 

𝑌௧ = 𝑒ఉభାఉమ௑೟ା௨೟         … (6.18) 

This regression model, in its present form, is non-linear . Therefore, it cannot be 
estimated by OLS method. However, if we take natural logs of both the sides, we 
obtain 

ln𝑌௧ = 𝛽ଵ + 𝛽ଶ𝑡 + 𝑢௧        … (6.19) 

It transforms into a semi-log equation. It is called a semi-log model as one of the 
variables is in log form.  

If we take ln𝑌௧ = 𝑌௧
∗, then equation (6.19) can be written as 

𝑌௧
∗ = 𝛽ଵ + 𝛽ଶ𝑡 + 𝑢௧        … (6.20) 

Estimation of equation (6.20) is simple. The equation is linear in parameters and 
in variables. Thus, we can apply OLS method to estimate the parameters. The 
implication of the regression model (6.20), however, is much different from the 
regression model (6.1). 

If we take the differentiation of the regression model 𝑌௧ = 𝛽ଵ + 𝛽ଶ𝑋௧ + 𝑢௧, we 
obtain  
ௗ௒
ௗ௧

= 𝛽ଶ         … (6.21) 

Equation (6.21) shows that the slope of the regression equation is constant. An 
implication of the above is that the absolute change in the dependent variable for 
unit increase in the independent variable is constant throughout the sample. If 
there is an increase in X by one unit, Y increases by 𝛽ଶ unit. 

Now let us consider the regression model ln𝑌௧ = 𝛽ଵ + 𝛽ଶ𝑡 + 𝑢௧ . If we take 
differentiation of equation (6.19) we find that  
ௗ୪୬௒೟

ௗ௧
= 𝛽ଶ  

which means  
ଵ
௒೟

ௗ௒೟
ௗ௧

= 𝛽ଶ         … (6.22) 

An implication of equation (6.22) is that the slope of the regression model is 
variable. Thus its interpretation is different from that of the regression model 
𝑌௧ = 𝛽ଵ + 𝛽ଶ𝑋௧ + 𝑢௧. 
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For equation (6.19), we interpret the slope coefficient (𝛽ଶ) as follows: For every 
unit increase in X, there is 𝛽ଶ per cent increase Y. Thus, for a semi-log model the 
change in the dependent variable in terms of percentages. The semi-log model is 
useful is estimating growth rates. 

6.5  LOG-LINEAR MODELS  
Let us consider the following regression equation: 

Let us take the case of the following non-linear model 

 𝑌 = 𝛽ଵ𝑋ఉమ         … (6.23) 

This model will be intrinsically linear if it can be transformed into  

𝑌∗ = 𝛽ଵ + 𝛽ଶ𝑋∗ + 𝑢       … (6.24) 

Using the logarithm of each of the variable in equation (6.23), we get the 
following transformed equation:  

ln𝑌௜ = 𝛽ଵ + 𝛽ଶln𝑋௜ + 𝑢௜      ... (6.25) 

The regression model given at (6.25) is called log-linear model (because it is 
linear in logs of the variables) or double-log model (because both variables are in 
log form). 

Let us take differentiation of equation (6.25) with respect to 𝑋௜  

ௗ(୪୬௒೔)
ௗ௑೔

= ଵ
௒೔

. ୢଢ଼೔
ௗ௑೔

        ... (6.26) 

ୢଢ଼೔
ௗ௑೔

= ఉమ
௑೔

         ... (6.27) 

By combining equations (6.26) and (6.27) we find that 

ୢଢ଼೔
ௗ௑೔

= ௒೔
௑೔

𝛽ଶ         

Or, 

ୢଢ଼೔
ௗ௑೔

௑೔
௒೔

= 𝛽ଶ         ... (6.28) 

A closer look at equation (6.28) shows that the slope parameter represents the 
elasticity between Y and X. 

This attractive feature of the log-linear model has made it popular in applied 
work. The slope coefficient 𝛽ଶ measures the elasticity of Y with respect to X , 
that is, the percentage change in Y  for one per cent change in X . Thus, if Y  
represents the quantity of a commodity demanded and X  its unit price, then 𝛽ଶ 
measures the price elasticity of demand.  
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6.6  CHOICE OF FUNCTIONAL FORM  
By you would have observed that the two variable regression model could have 
three functional forms as given below. 

(I) 𝑌௜ = 𝛽ଵ + 𝛽ଶ𝑋௜ + 𝑢௜ 

(II) 𝑙𝑛𝑌௜ = 𝛽ଵ + 𝛽ଶ𝑋௜ + 𝑢௜ 

(III) ln𝑌௜ = 𝛽ଵ + 𝛽ଶln𝑥௜ + 𝑢௜ 

A question arises: which one is the best model? The choice of functional form 
depends on our objective. We should choose the model that gives us relevant 
answer to our queries. Suppose our objective is to estimate the impact of change 
in the independent variable on the dependent variable. In this case we can use 
model-I. On the other hand, if our objective is to estimate growth rate in the 
dependent variable as a result of the change in the independent variable, we 
should opt for semi-log model (model II). If our objective is to estimate elasticity 
between two variables, we choose the log-linear model.  

The three regression models (Models –I, II, III) will give different estimates of 
the parameters. The standard error of the estimators will also be different. 
Further, the coefficient of determination, 𝑅ଶ , will be different for all three 
models. Can we compare the 𝑅ଶ of the models and say that the model with the 
highest 𝑅ଶ  is the best fit? We cannot compare the value of 𝑅ଶ  obtained from 
regression models with different dependent variables. However, we can compare 
𝑅ଶ  of regression models with the same dependent variable and the same 
estimation method. Thus the 𝑅ଶ  value of Model-I and Model-II cannot be 
compared. We can compare Model-II and Model-III in terms of their best fit. 

If two regression models are almost similar in terms of their coefficient of 
determination, statistical significance of estimators and diagnostic checking (to 
be discussed in Units 13 and 14), we prefer the simpler model. The simpler 
model is easier to comprehend and usually accepted by others.  

The log-linear regression model has certain advantages: (i) the parameters are 
invariant to change of scale since they measure percentage changes, (ii) the 
model gives elasticity figures directly, and (iii) the model moderates the problem 
of heteroscedasticity to some extent (see Unit 11 for the problem of 
heteroscedasticity).  

Check Your Progress 2 

1) In a semi-log model how do you interpret the slope coefficient?  

 .......................................................................................................................
 ....................................................................................................................... 
 ....................................................................................................................... 

2)  Describe how the slope parameter of a log-linear regression model is 
estimated.  

 .......................................................................................................................
 .......................................................................................................................
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 .......................................................................................................................
 .......................................................................................................................
 ....................................................................................................................... 

2) What are the advantages of the log-linear model?  

.......................................................................................................................
 .......................................................................................................................
 .......................................................................................................................
 .......................................................................................................................
 ....................................................................................................................... 

3) What is meant by intrinsically linear model? Can you compare the results 
of an intrinsically linear model with that of a linear model? Why or why 
not? 

.......................................................................................................................
 .......................................................................................................................
 .......................................................................................................................
 .......................................................................................................................
 ....................................................................................................................... 

6.7  LET US SUM UP 
In this Unit we discussed about the functional forms that can be accommodated 
in a two variable regression model. We began with the regression model passing 
through the origin (there is no intercept). We pointed out the impact of changes in 
the scale of measurement of variables. Subsequently we considered three 
functional forms: the original model, the semi-log model and the log-linear 
model. The interpretations of the parameters in all three functional forms have 
been discussed in the Unit.  

6.8  ANSWERS TO CHECK YOUR PROGRESS 
EXERCISES 

Check Your Progress 1 

1)  The exclusion of intercept term from a regression model has serious 
implication. It should be omitted only when the intercept term in the 
unrestricted model is statistically not significant.  

2) We have listed the implications of the omission of the intercept term in 
table 6.1. Go through it and answer.  

3) When there is a change in the measurement scale of the explanatory 
variable the concerned estimate is affected. If X is multiplied by c, the 
parameter is divided by c. 

4)  If Y is multiplied by c, all parameters in the model are multiplied by c. 
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Check Your Progress 2 

1)  In a semi-log model the slope parameter indicates growth rate. If there is 1 
unit increase in the value of X, the expected value of Y increases by  per 
cent.  

2)  The estimation of the log-linear model is the same as the simple regression 
model, except that the variables are transformed. Write down the steps 
followed in estimation of a regression model. 

3)  We have mentioned three advantages in the text: (i) the parameters are 
invariant to change of scale since they measure percentage changes, (ii) the 
model gives elasticity figures directly, and (iii) the model lessens the 
problem of heteroscedasticity to some extent. 

4)  You cannot compare the results of two regression models unless the 
dependent variable is the same.  

 



UNIT 7 MULTIPLE LINEAR REGRESSION 
MODEL: ESTIMATION 

Structure 

7.0  Objectives 

7.1 Introduction 

7.2  Assumptions of Multiple Linear Regression Model 

 7.2.1 Interpretation of the Model  

7.3  Estimation of Multiple Regression Model 

7.4 Maximum Likelihood Method of Estimation 

7.5  Coefficient of Determination: R2 

7.6  Adjusted-R2 

7.7 Let Us Sum Up 

7.8  Answers/ Hints to Check Your Progress Exercises 

7.0  OBJECTIVES 
After going through this unit, you will be able to: 

 specify the multiple regression model involving more than one explanatory 
variable; 

 estimate the parameters of the multiple regression model by the OLS method 
stating their properties;  

 interpret the results of an estimated multiple regression model; 

 indicate the advantage of using matrix notations in multiple regression 
models; 

 explain the maximum likelihood method of estimation showing that the 
‘maximum likelihood estimate (MLE)’ and the OLS estimate are 
asymptotically similar; 

 derive the expression for the coefficient of determination (R2) for the case of 
a simple multiple regression model with two explanatory variables; and 

 distinguish between R2 and adjusted R2 specifying why adjusted R2 is 
preferred in practice. 

7.1  INTRODUCTION  
By now you are familiar with the simple regression model where there is one 
dependent variable and one independent variable. The dependent variable is 
explained by the independent variable. Now let us discuss about the multiple 
regression model. In a multiple regression model, there is one dependent variable 
                                                
 Dr. Pooja Sharma, Assistant Professor, Daulat Ram College, University of Delhi 
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and more than one independent variable. The simplest possible multiple 
regression model is a three-variable regression model, with one dependent 
variable and two explanatory variables. Such a three-variable multiple regression 
equation or model is expressed as follows: 

𝑌௜ = 𝛽ଵ + 𝛽ଶ𝑋ଶ௜ + 𝛽ଷ𝑋ଷ௜ + 𝑢௜      … (7.1) 
Throughout this unit, we shall be mostly dealing with a multiple regression 
model as specified in equation (7.1) above. Here, Y is the dependent variable and 
X2 and X3 are independent variables. ui is the stochastic error term. The 
interpretation of this error term is the same as in the simple regression model. 
You may wonder as to why there is no X1 in equation (7.1). The answer is that X1 

is implicitly taken as 1 for all observations. In the above equation, the parameter 
𝛽ଵ is the intercept term. We can think of Y, X2 and X3 as some variables from 
economic theory. We may treat it as a demand function, where Y stands for 
quantity demanded of a good, and X2 and X3 are price of that good and the 
consumer’s income, respectively. As another example, we can think of a 
production/demand function with two inputs. Here Y is the quantity produced or 
demanded of a good, and X2 is the labour input, and X3 the capital input. You can 
think of many similar examples. 

7.2  ASSUMPTIONS OF MULTIPLE REGRESSION 
MODEL  

Recall that the simple regression model is based on certain assumptions. These 
assumptions are the benchmark for a regression model. When these assumptions 
are fulfilled by a regression model, we call it as the classical linear regression 
model (CLRM). The main assumptions for the classical multiple regression 
models remain the same as the simple regression model. There is one change. 
This relates to a new assumption on multicollinearity. Since we are considering 
more than one independent variable Xi, it is now necessary to assume that the Xi’s 
are not perfectly correlated. Let us recapitulate the assumptions of the CLRM 
with this new assumption added as follows: 

(i)  The regression model is linear in parameters. This assumption implies 
that the dependent variable is a linear function of the parameters, βs. The 
regression model could be non-linear in explanatory variables. 

(ii)  There is no covariance between iu and Xi variables. This implies, in a 
multiple regression model like that in equation (7.1), there is no 
correlation between the error term and explanatory variables. That is: 

𝐶𝑜𝑣(𝑢௜, 𝑋ଶ௜) = 𝐶𝑜𝑣(𝑢௜, 𝑋ଷ௜) = 0     … (7.2) 

 In order to avoid this problem, we assume that all explanatory variables 
are non-stochastic in nature. This implies that the values taken by the 
explanatory variables X are considered fixed in repeated samples.  
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(iii) The mean of the error terms is zero. In other words, the expected value of 
the error term conditional upon the explanatory variables X2i and X3i is 
zero. This means: 

 𝐸(𝑢௜) = 0 or 𝐸(𝑢௜|𝑋ଶ௜, 𝑋ଷ௜) = 0    … (7.3) 

(iv) No autocorrelation: This assumption means that there is no serial 
correlation or autocorrelation between the error terms of the individual 
observations. This implies that the covariance between the error term 
associated with the ith observation 𝑢௜ and that with the jth observation 𝑢௝  is 
zero. In notations, this means: 

cov൫𝑢௜, 𝑢௝ ൯ = 0       … (7.4) 

(v) Homoscedasticity: The assumption of homoscedasticity implies that the 
error variance is constant for all observations. This means:  

𝑣𝑎𝑟(𝑢௜
ଶ) = 𝜎ଶ       … (7.5) 

(vi) No exact collinearity between the X variables. This is the new additional 
assumption made for multiple regression models. This implies that there 
is no exact linear relationship between X2 and X3 This is referred to as the 
assumption of no perfect multicollinearity.  

(vii) The number of observations n must be greater than the number of 
parameters to be estimated. In other words, the number of observations n 
must be greater than the number of explanatory variables k. 

(viii) No specification bias: It is assumed that the model is correctly specified. 
The assumption of no specification bias implies that there are no errors 
involved while specifying the model. This means that both the errors of 
including an irrelevant variable and not including a relevant variable are 
taken care of while specifying the regression model.  

(ix) There is no measurement error, i.e., X’s and Y are correctly measured. 

7.2.1 Interpretation of the Model 

In the multiple regression model as in equation (7.1), the intercept β1 measures 
the expected value of the dependent variable Y, when the values of explanatory 
variables X2 and X3 are zero. The other two parameters, β2 and β3, are the partial 
regression coefficients. Let us know more about these coefficients. The 
regression coefficients β2 and β3 are also known as the partial slope coefficients. 
β2 measures the change in the mean value of Y [ i.e., E(Y)] per unit change in X2, 
holding the value of X3 constant. This means: 𝛽ଶ = ௱ா(௒)

௱௑మ
. It gives the ‘direct’ or 

the ‘net’ effect of a unit change in X2 on the mean value of Y holding the effect of 
X3 constant. Likewise, β3 measures the change in the mean value of Y, per unit 
change in X3, holding the value of X2 constant. Like β2, β3 is given by: 𝛽ଷ =
௱ா(௒)

௱௑య
. Thus, the slope coefficients of multiple regression measures the impact of 
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one explanatory variable on the dependent variable keeping the effect of the other 
variables fixed. 

7.3 ESTIMATION OF MULTIPLE REGRESSION 
MODEL 

The multiple regression equation is estimated to describe the Population 
Regression Function (PRF): Yi = β1 + β2X2i + β3X3i + ui. This function consists of 
two components. The first is the deterministic component given by E (Yi X2i, 

X3i). This is also referred to as the Population Regression Line. The second 
component is the random component given by ui. The PRF is estimated by using 
the sample. The estimated function (i.e., the sample regression function) is 
indicated by: 𝑌௜ = 𝑏ଵ + 𝑏ଶ𝑋ଶ௜ + 𝑏ଷ𝑋ଷ௜ + 𝑒௜. Recall that 𝑌௜ = 𝑌෠௜ + 𝑒௜ where 𝑌෠௜ is 
the estimated value of Yi given by 𝐸(𝑌௜|𝑋ଶ௜, 𝑋ଷ௜) and ei is the residual term. In the 
sample regression function, 𝑏ଵ is the estimator of population intercept β1 and 𝑏ଶ 
and 𝑏ଷ are the estimators of population partial slope coefficient β2 and β3 
respectively. The residual 𝑒௜ is the estimator of population error term ui. We 
know that the sample regression line is obtained in the OLS method by 
minimizing the residual sum of squares as follows:  

Min ∑𝑒௜
ଶ = ∑൫𝑌௜ − 𝑌෠௜൯

ଶ
 

 = ∑(𝑌௜ − 𝑏ଵ − 𝑏ଶ𝑋ଶ௜ − 𝑏ଷ𝑋ଷ௜ )ଶ [since 𝑌෠௜ = 𝑏ଵ + 𝑏ଶ𝑋ଶ௜ + 𝑏ଷ𝑋ଷ௜] 

We now consider the three first order conditions, i.e., డ∑௘೔
మ

డ௕భ
= 0, డ∑௘೔

మ

డ௕మ
= 0 and 

డ∑௘೔
మ

డ௕య
= 0. From these three partial derivatives, we obtain the estimators as:  

(i) 𝑏ଵ = 𝑌̄ − 𝑏ଶ𝑋̄ଶ − 𝑏ଷ𝑋̄ଷ 

(ii) 𝑏ଶ = (∑௬೔.௫మ೔)൫∑௫య೔
మ ൯ି(∑௬೔௫య೔)(∑௫మ೔௫య೔)

൫∑௑మ೔
మ ൯൫∑௑య೔

మ ൯ି(∑௑మ೔௑య೔)మ  

(iii) 𝑏ଷ = (∑௬೔.௫య೔)൫∑௫మ೔
మ ൯ି(∑௬೔௫మ೔)(∑௫మ೔௫య೔)

൫∑௫మ೔
మ ൯൫∑௫య೔

మ ൯ି(∑௫మ೔௫య೔)మ  

The corresponding variances and standard errors of the parameters are given as: 

𝑉(𝑏ଵ) = ൤ଵ
௡

+ ௑̄మ
మ∑௫య೔

మ ା௑̄య
మ∑௫మ೔

మ ିଶ௑̄మ௑̄య∑௫మ೔௫
∑௫మ೔

మ ∑௫య೔
మ ି(∑௫మ೔௫య೔)మ ൨ 𝜎ଶ  

 𝑆𝐸(𝑏ଵ) = +ඥ𝑉(𝑏ଵ)   

 𝑉(𝑏ଶ) = ∑௫య೔
మ

൫∑௫మ೔
మ ൯൫∑௫య೔

మ ൯ି(∑௫మ೔௫య೔)మ × 𝜎ଶ  

 𝑆𝐸(𝑏ଶ) = +ඥ𝑉(𝑏ଶ)  

 𝑉(𝑏ଷ) = ∑௫మ೔
మ

൫∑௫మ೔
మ ൯൫∑௫య೔

మ ൯ି(∑௫మ೔௫య೔) × 𝜎ଶ  
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∑௫య೔
మ ൫ଵି௥మయ

మ ൯
  

 𝑆𝐸(𝑏ଷ) = +ඥ𝑉(𝑏ଷ) 

 You should note further that: 

 (i) 𝐶𝑂𝑉(𝑏ଶ, 𝑏ଷ) = ି௥మయఙమ

൫ଵି௥మయ
మ ൯ට௫మ೔

మ ට௫య೔
మ

   

and the estimates of error variance and the partial correlation coefficients are 
given by: 

𝜎ොଶ = ∑௘೔
మ

௡ି௞
= ோௌௌ

௡ି௞
     … (7.6)  

For a regression model with 3 explanatory variables (such as equation (7.1)) we 
have 𝜎ොଶ = ோௌௌ

௡ିଷ
 . 

 𝑟ଶଷ = (∑௫మ೔௫య೔)మ

∑௫మ೔
మ ∑௫య೔

మ       … (7.7) 

Note that in the above expressions, lower case letters represent deviations from 
the mean. We know that, since we are considering the ‘classical’ linear multiple 
regression model, the OLS estimators of the intercept and the partial slope 
coefficients satisfy the following properties:  

a) The regression line passes through the means, 𝑌̄, 𝑋̄ଶ and 𝑋̄ଷ. In a k-
variable linear regression model, there is one regressand Yi and (k – 1) 
regressors since one of the coefficients is the intercept term 𝛽ଵ. Hence, the 
estimate of this intercept term is obtained as: 𝑏ଵ = 𝑌̄ − 𝑏ଶ𝑋̄ଶ − 𝑏ଷ𝑋̄ଷ.  

b) The mean value of the estimated 𝑌𝚤෡  is equal to the mean value of actual 
Yi, i.e., YYi ˆ . 

c) ଵ
௡

∑𝑒௜ = 𝑒̄௜ = 0. 

d) 𝐶𝑜𝑣(𝑒௜, 𝑋ଶ௜) = 𝐶𝑜𝑣(𝑒௜, 𝑋ଷ௜) = 0. That is, the residual ei is uncorrelated 
with X2i and X3i. In other words: (∑𝑒௜𝑋ଶ௜) =  (∑𝑒௜𝑋ଷ௜) = 0.  

e)   0ˆ, ii YeCov , i.e., residual ei is uncorrelated with iŶ  and   .0îiYe  

f) As r23, the correlation coefficient between X2 and X3, increases towards 1, 
the variances of b2 and b3 increases for given values of  2

2
2 , ix or 

 2
3ix . 

g) In view of f) above, given the values of r23 and  2
2ix or 2

3i
x the 

variances of OLS estimators are directly proportional to 2 .  
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coefficients are not only linear and unbiased but also have minimum 
variances in the class of all unbiased estimators, i.e., they are BLUE. In 
other words, they satisfy the Gauss-Markov theorem.  

7.4 MAXIMUM LIKELIHOOD METHOD OF 
ESTIMATION 

The method of ‘maximum likelihood estimation’ estimates the parameters of a 
probability distribution function (pdf). This is done by maximizing the likelihood 
function of the pdf. Hence, the estimators that maximize the likelihood function 
are called the ‘maximum likelihood estimators’. To understand this concept 
better, let us derive the maximum likelihood estimators (𝛽෨). We have used the 
notation 𝛽෨ to distinguish the ML estimators from the OLS estimators (𝛽መ). Let us 
assume that the pdf follows normal distribution. Thus,  f(x) = ଵ

ఙ√ଶగ
 𝑒ିభ

మ( ೣ ష µ
഑ ) మ. 

Taking log of the likelihood function of this pdf on its both sides, we get:  

𝑙𝑛𝐿 = −
𝑛
2

𝑙𝑛𝜎ଶ −
𝑛
2

𝑙𝑛(2𝜋) −
1
2

∑
(𝑌௜ − 𝛽ଵ − 𝛽ଶ𝑋ଶ௜ − 𝛽௞𝑋௞௜)ଶ

𝜎ଶ  

Differentiating the above function partially with respect to k ,...,, 21 and 2
we obtain the following (k + 1) equations: 

 డௗ୪୬ௗ௅
డఉభ

= ଵ
ఙమ ∑(𝑌௜ − 𝛽ଵ − 𝛽ଶ𝑋ଶ௜−. . . −𝛽௞𝑋௞௜)ௗ(−1)  (1) 

డௗ୪୬ௗ௅
డఉమ

= ଵ
ఙమ ∑(𝑌௜ − 𝛽ଵ − 𝛽ଶ𝑋ଶ௜−. . . −𝛽௞𝑋௞௜)ௗ(−𝑋ଶ௜)  (2) 

………………………………………………………………………. 

డௗ୪୬ௗ௅
డఉೖ

= ଵ
ఙమ ∑(𝑌௜ − 𝛽ଵ − 𝛽ଶ𝑋ଶ௜−. . . −𝛽௞𝑋௞௜)ௗ(−𝑋௞௜)  (k) 

డௗ୪୬ௗ௅
డఙమ = − ௡

ଶఙమ + ଵ
ଶఙమ ∑(𝑌௜ − 𝛽ଵ − 𝛽ଶ𝑋ଶ௜−. . . −𝛽௞𝑋௞௜)ଶ (k + 1) 

Setting these equations to zero (i.e., applying the first-order condition for 
optimization), and re-arranging terms, and denoting by 𝛽̃ଵ, 𝛽̃ଶ, . . . , 𝛽̃௞and 𝜎̃ଶ as 
the ‘maximum likelihood estimates (MLEs)’, we get: 

    ∑𝑌௜ = 𝑛𝛽̃ଵ + 𝛽̃ଶ∑𝑋ଶ௜ + ⋯ + 𝛽̃௞∑𝑋௞௜ 

∑𝑌௜𝑋ଶ௜ = 𝛽̃ଵ + ∑𝑋ଶ௜ + 𝛽̃ଶ∑𝑋ଶ௜
ଶ +. . . +𝛽̃௞∑𝑋ଶ௜𝑋௞௜ 

……………………………………………………… 

∑𝑌௜𝑋௞௜ = 𝛽̃ଵ∑𝑋௞௜ + 𝛽̃ଶ∑𝑋ଶ௜𝑋௞௜+. . . +𝛽̃௞∑𝑋௞௜
ଶ  
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The above equations are precisely the normal equations of the OLS method of 
estimation. Therefore, the MLEs of the 𝛽̃′𝑠 are the same as the OLS estimates of 
the 𝛽̃′𝑠. Thus, substituting the MLEs (or the OLS estimators) into the (K +1)st 
equation above, and simplifying, we obtain the MLEs of 2 as 

 𝜎̃ଶ = ଵ
௡

∑൫𝑌௜ − 𝛽̃ଵ − 𝛽̃ଶ𝑋ଶ௜−. . . −𝛽̃௞𝑋௞௜൯
ଶ
 

   2ˆ1
iu

n
 

You may note that this estimator differs from the OLS estimator 𝜎ොଶ = ∑𝑢௜
ଶ/(𝑛 −

𝑘). Since the latter is an unbiased estimator of ,2  the MLE of 2~ is a biased 
estimator. However, you should note that, asymptotically, 𝜎̃ଶis also unbiased. 
This means, asymptotically, the estimates of MLE and OLS are similar. Further, 
the MLE estimator is biased but it is consistent. 

For multiple regression models, the above algebraic expressions become 
unwieldy. Hence, we can take recourse to matrix algebra (on which you have 
studied in your earlier course BECC 104) to depict the multiple regression model. 
For this, let:  

  𝑋଴ =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

1
𝑋଴ଶ
𝑋଴ଷ.

.

.
𝑋଴௞⎦

⎥
⎥
⎥
⎥
⎥
⎤

      … (7.8) 

be the vector of values of the X variables for which we wish to predict Y෡଴ the 
mean prediction of Y. Now the estimated multiple regression equation in the 
scalar form is:  

 𝑌௜ = 𝛽ଵ + 𝛽ଶ𝑋ଶ௜ + 𝛽ଷ𝑋ଷ௜+. . . +𝛽௞𝑋௞௜ + 𝑢௜   … (7.9) 

In matrix notation (7.9) can be written compactly as:  

   𝑌௜ = 𝑥ᇱ
௜𝛽     … (7.10) 

where 𝑥ᇱ
௜ = [1 𝑋ଶ௜ 𝑋ଷ௜. . . 𝑋௞௜] and  

   𝛽 =

⎣
⎢
⎢
⎢
⎢
⎡𝛽ଵ

𝛽ଶ.
.
.

𝛽௞⎦
⎥
⎥
⎥
⎥
⎤

 

Equation (7.9) or (7.10) is the mean prediction of iY corresponding to given 𝑥ᇱ
௜. 

Hence, if ix  is as given in (7.8), (7.10) becomes  
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  ൫𝑌ூ|𝑥ᇱ
଴൯ = 𝑥ᇱ

଴𝛽     … (7.11) 

where, the values of 0x  are specified. Note that (7. 11) gives an unbiased 
prediction of 𝐸(𝑌௜|𝑥ᇱ

଴), since 𝐸൫𝑥ᇱ
଴𝛽൯ = 𝑥ᇱ

଴𝛽. The estimate of the variance of 
൫𝑌଴|𝑥ᇱ

଴൯ is given by: 

𝑉𝑎𝑟൫𝑌଴|𝑥ᇱ
଴൯ = 𝜎ଶ𝑥ᇱ

଴(𝑋ᇱ𝑋)ିଵ𝑥଴   … (7.12) 

where 2 is the variance of 0, xui   are the given values of the X variables for 
which we wish to predict the future values, and )( XX  is the matrix. In practice, 
we replace 2 by its unbiased estimator 2̂ . 

Check Your Progress 1 [answer the questions in 50-100 words within the given 
space] 

1) Specify the simplest form of a multiple regression model with examples. 
Why is it the simplest?  

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

....................................................................................................................... 

2) Enumerate the assumptions made for the CLRM in broad terms. What is 
the additional assumption made for the multiple regression model?  

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

....................................................................................................................... 

3) How are the estimated parameters of a multiple regression model 
interpreted?  

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

....................................................................................................................... 

4) Specify the satisfaction of the property which makes the OLS estimators 
obey the Gauss Markov theorem?  

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

....................................................................................................................... 
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7.5 COEFFICIENT OF DETERMINATION: R2 
In multiple regression, a measure of goodness of fit is given by R2. This is also 
called as the ‘coefficient of determination’. It is the ratio of the ‘explained sum of 
squares’ to the ‘total sum of squares’. In other words, it is the proportion of total 
variation in the dependent variable explained by the independent (or the 
explanatory) variables included in the model. To derive R2, we consider the 
sample regression function or equation as follows:  

𝑌௜ = 𝑏ଵ + 𝑏ଶ𝑋ଶ௜ + 𝑏ଷ𝑋ଷ௜ + 𝑒௜     … (7.13) 

where 𝑏ଵ = 𝑌̄ − 𝑏ଶ𝑋̄ଶ − 𝑏ଷ𝑋̄ଷ. Substituting 1b  in (7.13), and by considering X2i 
and X3i in their means, we get:  

𝑌௜ = 𝑌̄ − 𝑏ଶ𝑋̄ଶ − 𝑏ଷ𝑋̄ଷ + 𝑏ଶ𝑋ଶ௜ + 𝑏ଷ𝑋ଷ௜ + 𝑒௜  

Therefore, 𝑌௜ − 𝑌̄ = 𝑏ଶ(𝑋ଶ௜ − 𝑋̄ଶ) + 𝑏ଷ(𝑋ଷ௜ − 𝑋̄ଷ) +  𝑒௜  

Rewriting the above in lower case, i.e., by considering in deviation from mean, 
we get: 

𝑦௜ = 𝑏ଶ𝑥ଶ௜ + 𝑏ଷ𝑥ଷ௜ + 𝑒௜     … (7.14) 

We have ii YYY ˆˆ   where: 

iii XbXbbY 33221
ˆ   

33221 XbXbbY   

    3322133221
ˆ XbXbbXbXbbYY iii   

   333222
ˆ XXbXXbYY iii   

iii xbxbYY 3322
ˆ   ........ (7.15)      

Now, consider:  

iii eyy  ˆ        

Squaring both sides and summing up we get  

iiiii eyeyy    ˆ2ˆ 222   

   0ˆ 222
iii eyy  since   0,ˆ 0 eyCov i  
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    222 ˆ iii eyy      … (7.16)  

It means  TSS = ESS + RSS. Now, consider: 
TSS
ESSR 2

 
where ESS =

 
 2ˆ iy . 

Since iii yye ˆ  with iii xbxby 3322ˆ   we have: ie = iy - ( ii xbxb 3322  ) 

Now,    iii eee2  

=     iiii xbxbye 3322  

   iiiiii xebxebye 3322  

   iii yee2  [since    032 iiii xexe ]. 

     iiiiiii xbxbyyeye 3322
2  

    iiiiii xybxybye 3322
22

   … (7.17) 

Using (7.17) in (7.16) we get:  

     iiiiiii xybxybyyy 3322
222 ˆ  

   iiiii xybxyby 3322
2ˆ  = ESS 

Therefore, 𝑅ଶ = ாௌௌ
்ௌௌ

= ௕మ∑௬೔௫మ೔ା௕య∑௬೔௫య೔
∑௬೔

మ      … (7.18) 

The relationship between 2R and variance of a partial regression coefficient ( ib ) 
in a k-variable multiple regression model is given by: 

  










 22

2

1
1

iy
i Rx

bV   


 2

2
2 11

i

i

y
e

TSS
RSSR  

2

2

)1(
ˆ)(1

Syn
kn





  

 2
ie or   


 22

2
2 ˆˆ  kne

kn
e

i
i  

 


 22
2

2 )1(
1

Syny
n

y
Sy i

i  
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In comparing two regression models with the same dependent variable but 
differing number of X variables, one should be careful in choosing the model 
with highest R2. In order to understand why this is important, consider: 

 𝑅ଶ = ாௌௌ
்ௌௌ

ௗௗ = ௗௗ ଵିோௌௌ
்ௌௌ

ௗௗ = ௗ ଵି∑௘೔
మ

∑௬೔
మ  

Note that as the number of explanatory variables increase, the numerator ESS 
keeps on increasing. In other words, R2 increases as k, the number of independent 
variables increase. The above expression for R2 implies that R2 does not give any 
weightage to the number of independent variables in the model. Due to this 
reason, for comparison of two regressions with differing number of explanatory 
variables, we should not use R2. We now need an alternative coefficient of 
determination which takes into account the number of parameters estimated, i.e., 
k. For this, we consider the following measure called the adjusted R2 defined as 
follows. 

 𝑅̄ଶ = 1 − ோௌௌ/௡ି௞
்ௌௌ/௡ିଵ

 

  = 1 − ∑௘೔
మ (௡ି௞)⁄

∑௬೔
మ (௡ିଵ)⁄  

where k is the number of parameters in the model including the intercept term. 
The above is same as saying: 

 2

2
2 ˆ1

yS
R 

  

where 2̂  is the residual variance which is an unbiased estimator of true σ2. 2
yS  

is the sample variance of Y. Now, a relationship between 2R and 2R  is given by  

𝑅തଶ = 1 − (1 − 𝑅ଶ) ௡ିଵ
௡ି௞

        … (7.19) 

Now, for deciding on whether 𝑅ଶ or 𝑅തଶ should be used, we must note the 
following:  

(i) If 22,1 RRk  . This implies that as the no. of explanatory variables X 
increases, the adjusted 𝑅ଶ increases less than the usual 𝑅ଶ  

(ii) 2R can be negative but 
2R is necessarily non-negative. This is because, in 

(7.18):  

If .1,1 22  RR  

If  𝑅ଶ = 0ௗ, ௗௗ𝑅̄ଶ = ଵି௞
௡ି௞

.
 
Hence,

 
if k > 1 then .02 R  
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Thus, adjusted R2 can be negative. In such cases, it is conventional to take the 
value of 2R  as zero. Thus, a conclusive opinion on which of the two is superior 
to indicate the goodness of fit of a regression model is not possible. However, in 
practice, in multiple regression models, adjusted R2 is used to decide for the 
goodness of fit of the model for the reason that it takes into account the number 
of regressors and thereby the number of parameters estimated. 

Check Your Progress 2 [answer the questions in 50-100 words within the given 
space] 

1) Distinguish between the OLS estimate and the MLE.  

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.............................................................................................................. 

2) How is R2 defined? Indicate with suitable expressions.  

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.............................................................................................................. 

3) State the importance of adjusted-R2 as compared to R2. 

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

....................................................................................................................... 

4) How are R2 and adjusted-R2 related? What is the difference between the 
two?  

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

....................................................................................................................... 

5) How is the situation of adjusted-R2 being negative dealt with in practice?  

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

....................................................................................................................... 
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7.7   LET US SUM UP  
This unit has described the multiple regression model and its inferences. 
Recapitulating the assumptions of the multiple classical regression model, the 
unit indicates how an additional assumption on multicollinearity is necessary in 
multiple regression models. The interpretation of parameters, i.e., the intercept 
and the partial slope coefficient are explained. The unit has first discussed the 
estimation of parameters of the multiple regression model by the OLS (ordinary 
least squares) method. An alternative method, namely the method of maximum 
likelihood estimation (MLE) is introduced in the unit next. It is shown that 
asymptotically the OLS and the MLE coincide. The concept of ‘coefficient of 
determination’ or goodness of fit has been described. Finally, the need and the 
use of adjusted R2 has been explained. 

7.8  ANSWERS/ HINTS TO CHECK YOUR 
PORGRESS EXERCISES  

Check Your Progress 1 

1) A multiple regression model is one in which there is more than one 
independent or the explanatory variable. Hence, the simplest multiple 
regression model is one with one dependent variable and two independent 
variables. Such a model is specified as: 𝒀𝒊 = 𝜷𝟏 + 𝜷𝟐𝑿𝟐𝒊 + 𝜷𝟑𝑿𝟑𝒊 + 𝒖𝒊. 
Examples can be a production function in which the dependent variable is 
the output and the independent variables are two inputs viz. labour and 
capital. In microeconomics, it could be a relationship between consumption 
of a commodity as the dependent variable and price and income as the two 
independent variables. 

2) (i) The model is linear in parameters; (ii) ui and Xi are not correlated, i.e., 
𝒄𝒐𝒗(𝒖𝒊, 𝑿𝟐𝒊) = 𝑪𝒐𝒗(𝒖𝒊, 𝑿𝟑𝒊) = 𝟎; (iii) the conditional expectation of the 
error term is zero, i.e., 𝑬(𝒖𝒊|𝑿𝟐𝒊, 𝑿𝟑𝒊) = 𝟎; (iv) error terms are not correlated 
or there is no auto correlation, i.e., 𝐜𝐨𝐯൫𝒖𝒊, 𝒖𝒋 ൯ = 𝟎; (v) there is 
homoscedasticity or the error variance do not differ, i.e., 𝒗𝒂𝒓൫𝒖𝒊

𝟐൯ = 𝝈𝟐; (vi) 
no multicollinearity or perfect collinearity, i.e., Corr (Xi, Xj) ≠ 1; (vii) number 
of observations (n) is greater than the number of parameters estimated (k); 
(viii) there is no specification bias, i.e., neither a relevant variable is omitted 
nor an irrelevant variable is included in the model; and (ix) there is no 
measurement error in X’s and Y. Assumption no (vi) above is the additional 
assumption required in multiple regression models. 

3) The intercept β1 measures the expected value of the dependent variable Y, 
given the values of explanatory variables X2 and X3. β2 measures the change 
in the mean value of Y [i.e., E(Y)] per unit change in X2, holding the value of 
X3 constant. This means: 𝛽ଶ = ௱ா(௒)

௱௑మ
. Likewise, β3 is  defined. 
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4) Under the assumptions of CLRM, the OLS estimators of partial regression 
coefficients are not only linear and unbiased but also have minimum 
variances in the class of all unbiased estimators, i.e., they are BLUE (best 
liner unbiased estimate). It is this property that makes the OLS estimates 
satisfy the Gauss-Markov theorem.  

1) Check Your Progress 2The OLS estimators are obtained by minimizing the 
residual sum of squares, i.e., Min ∑𝑒௜

ଶ = ∑൫𝑌௜ − 𝑌෠௜൯
ଶ
. The MLEs are 

obtained by maximising the ‘likelihood function’ of the corresponding pdf. 
There is thus a basic difference in the approach of the two methods. However, 
once the first order conditions are applied and simplified, the equations that 
we obtain in the MLE approach is same as the normal equations that we get 
in the OLS method. Hence, the estimates for the parameters obtained by 
solving those equations are the same. However, there is an essential 
difference relating to the unbiased estimate of 𝜎ଶ. The denominator of the 
expression for this unbiased estimate in the OLS method is ‘n-k’ whereas in 
the ML method it is ‘n’. This important difference makes the estimate of 

2
in the ML approach biased for small samples. For large samples, it is 
unbiased. Hence, the estimates of ML and OLS are similar and 
asymptotically, the OLS and the MLEs coincide.  

2) For a 2 independent variables multiple regression model, whose sample 
regression function is given as

 
𝑌௜ = 𝑏ଵ + 𝑏ଶ𝑋ଶ௜ + 𝑏ଷ𝑋ଷ௜ + 𝑒௜ the R2 is

 
defined as: 


 

 2
33222

i

iiii

y
xybxyb

TSS
ESSR

. 

(iii) For comparing two multiple regressions with differing number of 
explanatory variables, relying on R2 could be misleading. This is because R2 
does not take into account the number of explanatory variables. 

(iv) They are related as:  
kn

nRR




111 22 . An important difference is that while

 
R2 cannot be negative, adjusted R2 can be negative. 

 

5) When this is negative, conventionally it is taken as zero. 
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Structure 
8.0  Objectives 
8.1 Introduction 
8.2  Assumptions of Multiple Regression Models  
 8.2.1 Classical Assumptions 

8.2.1 Test for Normality of the Error Term 

8.3 Testing of Single Parameter 
 8.3.1 Test of Significance Approach 
 8.3.2 Confidence Interval Approach 

8.4 Testing of Overall Significance 
8.5  Test  of Equality between Two Parameters 
8.6  Test of Linear Restrictions on Parameters 
 8.6.1 The t-Test Approach 

8.6.2 Restricted Least Squares 

8.7 Structural Stability of a Model: Chow Test  
8.8  Prediction  
 8.8.1 Mean Prediction 

8.8.2 Individual Prediction 

8.9  Let Us Sum Up 
8.10  Answers/ Hints to Check Your Progress Exercises 

8.0  OBJECTIVES 
After going through this unit, you should be able to 
 explain the need for the assumption of normality in the case of multiple 

regression; 
 describe the procedure of testing of hypothesis on individual estimators;  
 test the overall significance of a regression model; 
 test for the equality of two regression coefficients; 
 explain the procedure of applying the Chow test; 
 make prediction on the basis of multiple regression model;  
 interpret the results obtained from the testing of hypothesis, both individual 

and joint; and 
 apply various tests such as likelihood ratio (LR), Wald (W) and Lagrange 

Multiplier Test (LM). 

                                                
 Dr. Pooja Sharma, Assistant Professor, Daulat Ram College, University of Delhi  
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In the previous unit we discussed about the interpretation and estimation of 
multiple regression models. We looked at the assumptions that are required for 
the ordinary least squares (OLS) and maximum likelihood (ML) estimation. In 
the present Unit we look at the methods of hypothesis testing in multiple 
regression models.  

Recall that in Unit 3 of this course we mentioned the procedure of hypothesis 
testing. Further, in Unit 5 we explained the procedure of hypothesis testing in the 
case of two variable regression models. Now let us extend the procedure of 
hypothesis testing to multiple regression models. There could be two scenarios in 
multiple regression models so far as hypothesis testing is concerned: (i) testing of 
individual coefficients, and (ii) joint testing of some of the parameters. We 
discuss the method of testing for structural stability of regression model by 
applying the Chow test. Further, we discuss three important tests, viz., 
Likelihood Ratio test, Wald test, and Lagrange Multiplier test. Finally, we deal 
with the issue of prediction on the basis of multiple regression equation. 

One of the assumptions in hypothesis testing is that the error variable 𝑢௜ follows 
normal distribution. Is there a method to test for the normality of a variable? We 
will discuss this issue also. However, let us begin with an overview of the basic 
assumptions of multiple regression models.  

8.2  ASSUMPTIONS OF MULTIPLE REGRESSION 
MODELS  

In Unit 7 we considered the multiple regression model with two explanatory 
variables 𝑋ଶ and 𝑋ଷ. The stochastic error term is 𝑢௜.  

𝑌௜ = 𝛽ଵ + 𝛽ଶ𝑋ଶ௜ + 𝛽ଷ𝑋ଷ௜ + 𝑢௜       … (8.1) 

8.2.1 Classical Assumptions  

There are seven assumptions regarding the multiple regression model. Most of 
these assumptions are regarding the error term. We discussed about these 
assumptions in the previous Unit. Let us briefly mention those assumptions 
again.  

a) The regression model is linear in parameters and  variables. 

b) The mean of error terms is zero. In other words, the expected value of 
error term conditional upon the explanatory variables X2i and X3i is zero. 

𝐸(𝑢௜)= 0 or 𝐸(𝑢௜|𝑋ଶ௜, 𝑋ଷ௜) = 0 

c) There is no serial correlation (or autocorrelation) among the error terms. 
The error terms are not correlated. It implies that the covariance between 
the error term associated with ith observation 𝑢௜  and the error term 
associated with jth observation, 𝑢௝ is zero. 
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cov൫𝑢௜, 𝑢௝൯ = 0  

d) Homoscedasticity: The assumption of homoscedasticity states that the 
error variance is constant throughout the population. The variance of the 
error term associated at each observation has the same variance.  

𝑣𝑎𝑟(𝑢௜) = 𝜎ଶ  

e) Exogeneity of explanatory variables: There is no correlation between the 
explanatory variables and the error term. This assumption is also called 
exogeneity, because the explanatory variables are assumed to be 
exogenous (given from outside; X is not determined inside the model). In 
contrast, Y is determined within the model. When the explanatory 
variable is correlated with the error term, it is called endogeneity problem.  
In order to avoid this problem, we assume that the explanatory variables 
are kept fixed across samples.   

f) Independent variables are not linear combination of one another. If there 
is perfect linear relationship among the independent variables, the 
explanatory variables move in harmony and it is not possible to estimate 
the parameters. It is also called multicollinearity problem.  

g) The error variable is normally distributed. This assumption is not 
necessary in OLS method for estimation of parameters. It is required for 
construction of confidence interval and hypothesis testing. In the 
maximum likelihood method discussed in the previous Unit, in order to 
estimate the parameters we assumed that the error term follows normal 
distribution.  

8.2.2 Test for Normality of the Error Term 

As pointed out earlier, we look into the assumption of normality of the error 
term. In order to test for normality of the error term we apply the Jarque-Bera test 
(often called the JB test). It is an asymptotic or large sample test. We do not 
know the error terms in a regression model; we know the residuals. Therefore, 
the JB test is based on the OLS residuals. Recall two concepts from statistics: 
skewness and kurtosis. A skewed curve (i.e., asymmetric) is different from a 
normal curve. A leptokurtic or platykurtic curve (i.e., tall or short in height) is 
different from a normal curve. The JB test utilises the measures of skewness and 
kurtosis.   

We know that for a normal distribution S = 0 and K = 3. A signification deviation 
from these two values will confirm that the variable is not normally distributed.  

Jarque and Bera constructed the J-statistic given by  

𝐽𝐵 = ௡
଺

ቂ𝑆ଶ + (௄ିଷ)మ

ସ
ቃ         … (8.2) 

where 

n = sample size   
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S = measure of skewness (ஜయ
஢య)    

K = measure of kurtosis (ஜర
ஜమ

మ) 

Skewness and kurtosis are measured in terms of the moments of a variable. As 
you know from BECC 107, Unit 4, the formula for calculating the rth moment of 
variable 𝑋௜ is  

 μ௥ = ଵ
௡

∑ 𝑓௜(𝑋௜ − 𝑋ത)௥ ௡
௜ିଵ        … (8.4) 

Variance is the second moment μଶ.  

In equation (8.2) the JB statistic follows chi-square distribution with 2 degrees of 
freedom, ~𝜒(ଶ)

ଶ  . 

Let us find out the value of the JB statistic if a variable follows normal 
distribution. For the normal distribution, as mentioned above S = 0 and K = 3. By 
asubstitutingthese values in equation (8.2) we obtain  

𝐽𝐵 = ௡
଺

[0 + 0] = ௡
଺

× 0 = 0        … (8.3) 

For a variable not normally distributed JB statistics will assume increasingly 
large values. The null hypothesis is 

H0: The random variable follows normal distribution.  

We draw inferences from the JB statistic as follows:   

a) If the calculated value of JB statistic is greater than the tabulated value of 
𝜒ଶ for 2 degrees of freedom, we reject the null hypothesis. We infer that 
the random variable is not normally distributed. 

b) If the calculated value of the JB statistic is less than the tabulated value of 
𝜒ଶ for 2 degrees of freedom, we do not reject the null hypothesis. We 
infer that the random variable is normally distributed. 

Check Your Progress 1 

1)  List the assumptions of multiple regression models.   
 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................  

2)  State the Jarque-Bera test for normality. 

 .......................................................................................................................

 .......................................................................................................................

 ....................................................................................................................... 

 .......................................................................................................................
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The population regression function is not known to us. We estimate the 
parameters on the basis of sample data. Since we do not know the error variance 
𝜎ଶ, we should apply t-test instead of z-test (based on normal distribution). 

Let us consider the population regression line given at equation (8.1).  

 𝑌௜ = 𝛽ଵ + 𝛽ଶ𝑋ଶ௜ + 𝛽ଷ𝑋ଷ௜ + 𝑢௜        

The sample regression line estimated by ordinary least squares (OLS) method is  

 𝑌෠௜ = 𝑏ଵ + 𝑏ଶ𝑋ଶ௜ + 𝑏ଷ𝑋ଷ௜      … (8.4) 

where b1, b2 and b3 are estimators of 𝛽ଵ, 𝛽ଶ and 𝛽ଷ respectively.  The estimator of 
error variance 𝜎ଶ is given by 𝜎ොଶ = ோௌௌ

௡ି௞
 . 

There are two approaches to hypothesis testing: (i) test of significance approach, 
and (ii) confidence interval approach. We discuss both the approaches below. 

8.3.1 Test of Significance Approach 

In this approach we proceed as follows: 

(i) Take the point estimate of the parameter that we want test, viz., b1, or  
b2 or  b3.  

(ii) Set the null hypothesis. Suppose we expect that variable 𝑋ଶ has no 
influence on Y. It implies that 𝛽ଶ should be zero. Thus, null hypothesis 
is 𝐻଴: 𝛽ଶ = 0. In this case what should be alternative hypothesis? The 
alternative hypothesis is 𝐻஺: 𝛽ଶ ≠ 0.  

(iii) If 𝛽ଶ ≠ 0, then 𝛽ଶcould be either positive or negative. Thus we have 
to apply two-tail test. Accordingly, the critical value of the t-ratio has 
to be decided. 

(iv) Let us consider another scenario. Suppose we expect that 𝛽ଷshould be 
positive. It implies that our null hypothesis is 𝐻଴: 𝛽ଷ > 0 . The 
alternative hypothesis is 𝐻஺: 𝛽ଷ ≤ 0.  

(v) If 𝛽ଷ > 0, then 𝛽ଷ could be either zero or negative. Thus the critical 
region or rejection region lies on one side of the t probability curve. 
Therefore, we have to apply one-tail test. Accordingly the critical 
value of t-ratio is to be decided. 

(vi) Remember that the null hypothesis depends on economic theory or 
logic. Therefore, you have to set the null hypothesis according to 
some logic. If you expect that the explanatory variable should have no 
effect on the dependent variable, then set the parameter as zero in the 
null hypothesis.    

(vii) Decide on the level of significance. It represents extent of error you 
want to tolerate. If the level of significance is 5 per cent (α = 0.05), 
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your decision on the null hypothesis will go be wrong 5 per cent 
times. If you take 1 per cent level of significance (α = 0.01), then your 
decision on the null hypothesis will be wrong 1 per cent times (i.e., it 
will be correct 99 per cent times). 

(viii) Compute the t-ratio. Here the standard error is the positive square root 
of the variance of the estimator. The formula for the variance of the 
OLS estimators in multiple regression models is given in Unit 7.  

𝑡 = ௕మିఉమ
௦௘(௕మ)

        … (8.5) 

(ix) Compare the computed value of the t-ratio with the tabulated value of 
the t-ratio. Be careful about the two issues while reading the t-table: 
(i) level of significance, and (ii) degree of freedom. Level of 
significance we have mentioned above. Degree of freedom is (n–k), as 
you know from the previous Unit.  

(x) If the computed value of t-ratio is greater than the tabulated value of t-
ratio, reject the null hypothesis. If computed value of t-ratio is less 
than the tabulated value of t-ratio, do not reject the null hypothesis 
and accept the alternative null hypothesis. 

8.3.2 Confidence Interval Approach  

We have discussed about interval estimation in Unit 3 and Unit 5. Thus, here we 
bring out the essential points only.  

(i) Remember that confidence interval (CI) is created individually for 
each parameter. There cannot be a single confidence interval for a 
group of parameters.  

(ii) Confidence interval is build on the basis of the logic described above 
in the test of significance approach. 

(iii) Suppose we have the null hypothesis 𝐻଴: 𝛽ଶ = 0 and the alternative 
hypothesis is 𝐻஺: 𝛽ଶ ≠ 0 . The estimator of 𝛽ଶ  is 𝑏ଶ . We know the 
standard error of 𝑏ଶ.  

(iv) Here also we decide on the level of significance (α). We refer to the t-
table and find out the t-ratio for desired level of significance. 

(v) The degree of freedom is known to us, i.e., (n–k).  

(vi) Since the above is case of two-tailed test, we take 𝛼 2⁄  on each side of 
the t probability curve. Therefore, we take the t-ratio corresponding to 
the probability 𝛼 2⁄  and the degrees of freedom applicable. 

(vii) Remember that confidence interval is created with the help of the 
estimator and its standard error. We test whether the parameter lies 
within the confidence interval or not.  

(viii) Construct the confidence interval as follows: 
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ൣ𝑏ଶ − 𝑡ఈ ଶ⁄ 𝑆𝐸(𝑏ଶ) ≤ 𝛽ଶ ≤ 𝑏ଶ + 𝑡ఈ ଶ⁄ 𝑆𝐸(𝑏ଶ)൧.   … (8.6) 

(ix) The probability of the parameter remaining in the confidence interval 
is (1 − 𝛼). If we have taken the confidence interval as 5 per cent, then 
the probability that 𝛽ଶ will remain in the confidence interval is 95 per 
cent. 

𝑃௥ൣ𝑏ଶ − 𝑡ఈ ଶ⁄ 𝑆𝐸(𝑏ଶ) ≤ 𝛽ଶ ≤ 𝑏ଶ + 𝑡ఈ ଶ⁄ 𝑆𝐸(𝑏ଶ)൧ = (1 − 𝛼) … (8.7) 

(x) If the parameter (in this case, 𝛽ଶ) remains in the confidence interval, 
do not reject the null hypothesis. 

(xi) If the parameter does not remain within the confidence interval, reject 
the null hypothesis, and accept the alternative null hypothesis.  

Check Your Progress 2 
1)  Describe the steps you would follow in testing the hypothesis that 𝛽ଶ < 0.  

 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 ........................................................................................................................ 

2)  Create a confidence interval for the population parameter of the partial 
 slope coefficient.  
 ...........................................................................................................................

 ...........................................................................................................................

 ...........................................................................................................................

 ...........................................................................................................................

 .......................................................................................................................... 

8.4 TEST OF OVERALL SIGNIFICANCE  

The overall test of significance of a multiple regression model is carried out by 
applying F-test. We have discussed about the F-test in Unit 5 of this course in the 
context of two variable models. For testing of the overall significance of a 
multiple regression model we proceed as follows: 

(i) Set the null hypothesis. The null hypothesis for testing the overall 
significance of a multiple regression model is given as follows: 

                  𝐻଴: 𝛽ଶ = 𝛽ଷ =. . . 𝛽௞ = 0       … (8.8) 

(ii) Set the corresponding alternative hypothesis.  

                  𝐻஺: 𝛽ଶ =. . . = 𝛽௞ ≠ 0      … (8.9) 
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(iii) Decide on the level of significance. It has the same connotation as in 
the case of t-test described above. 

(iv) For multiple regression model the F-statistic is given by 

𝐹 = ாௌௌ/(௞ିଵ)
ோௌௌ(௡ି௞)       … (8.10) 

(v) Find out the degrees of freedom. The F-statistic mentioned in 
equation (8.10) follows F distribution with degrees of freedom (k–1, 
n–k).  

(vi) Find out the computed value of F on the basis of equation (8.10). 
Compare it with the tabulated value of F (given at the end of the 
book). Read the tabulated F value for desired level of significance and 
applicable degrees of freedom.  

(vii) If the computed value of F is greater than the tabulated value, then 
reject the null hypothesis.  

(viii) If the computed value is less than the tabulated value, do not reject the 
null hypothesis.  

8.5 TESTOF EQUALITY BETWEEN TWO 
PARAMETERS 

We can compare between the parameters of a multiple regression model. 
Particularly, we can test whether two parameters are equal in a regression model. 
For this purpose we apply the same procedure as we have learnt in the course 
BECC 107.  

Let us take the following regression model: 

𝑌௜ = 𝛽ଵ + 𝛽ଶ𝑋ଶ௜ + 𝛽ଷ𝑋ଷ௜ + 𝛽ସ𝑋ସ௜ + 𝑢௜    … (8.11) 

Recall that we do not know the variance of the parameters. Thus, for comparison 
of the parameters we apply the t-test. Secondly, we do not the parameters. 
Therefore, we take their OLS estimators for comparison purposes. 

Our null hypothesis and alternative hypothesis are as follows: 

𝐻଴: 𝛽ଷ = 𝛽ସ or (𝛽ଷ − 𝛽ସ) = 0   … (8.12) 

𝐻ଵ: 𝛽ଷ ≠ 𝛽ସ or (𝛽ଷ − 𝛽ସ) ≠ 0    … (8.13) 

For testing of the above hypothesis, the t -statistic is given as follows: 

𝑡 = (௕యି௕ర)ି(ఉయିఉర)
ௌா(௕యି௕ర)         … (8.14) 

The above follows t-distribution with (n – k) degrees of freedom.  

Since 𝛽ଷ = 𝛽ସ under the null hypothesis, we can re-arrange equation (8.14) as 
follows:  

 𝑡 = ௕యି௕ర

ඥ௏(௕య)ା௏(௕ర)ିଶୡ୭୴(௕య,௕ర)
       … (8.15) 
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The computed value of t-statistic is obtained by equation (8.15). We compare the 
computed value of t-ratio with the tabulated value of t-ratio. We read the t-table 
for desired level of significance and applicable degrees of freedom. 

If the computed value of t-ratio is greater than the tabulated value, then we reject 
the null hypothesis. If the computed value of t-ratio is less than the tabulated 
value, then we do not reject the null hypothesis and accept the alternative 
hypothesis.  

We need to interpret our results. If we reject the null hypothesis we conclude that 
the partial slope coefficients 3 and 4 are statistically significantly different. If 
we do not reject the null hypothesis, we conclude that there is no statistically 
significant difference between the slope coefficients 3 and 4 . 

Check Your Progress 3 

1)  Mention the steps of carrying out a test of the overall significance a multiple 
regression model. 
...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

........................................................................................................................... 

2)  State how the equality between two parameters can be tested. 
...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

........................................................................................................................... 

8.6 TEST OF LINEAR RESTRICTIONS ON 
PARAMETERS 

Many times we come across situations where we have to test for linear 
restrictions on parameters. For example, let us consider the Cobb-Douglas 
production function.  

𝑌௜ = 𝛽ଵ𝑋ଶ௜
ఉమ𝑋ଷ௜

ఉయ𝑒௨೔        … (8.16) 

where 𝑌௜ is output,  𝑋ଶ௜  is capital and 𝑋ଷ௜  is labour. The parameters are  𝛽ଶ and 
𝛽ଷ . The stochastic error term is 𝑢௜. The subscript ‘i’ indicates the ith observation. 
The Cobb-Douglas production function exhibits constant returns to scale if the 
parameters fulfil the following condition: 

𝛽ଶ + 𝛽ଷ = 1         … (8.17) 
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As we have discussed in Unit 6, by taking natural log, the Cobb-Douglas 
production function can be expressed in linear form as  

 𝑙𝑛 𝑌௜ = 𝑙𝑛 𝛽ଵ + 𝛽ଶ𝑙𝑛𝑋ଶ௜ + 𝛽ଷ𝑙𝑛𝑋ଷ௜ + 𝑢௜   … (8.18) 

Suppose have collected data on a sample of firms; our sample size is n. The 
production function is Cobb-Douglas as given above. We want to test whether 
the production function exhibits constant returns to scale. For this purpose we 
need to apply the F-test. We can follow two approaches as discussed below. 

8.6.1 The t-Test Approach 

We will discuss two procedures for testing the hypothesis. 

(a) For the In this case our null hypothesis and alternative hypothesis are as 
follows: 

𝐻଴: 𝛽ଶ + 𝛽ଷ = 1        … (8.19) 

𝐻஺: 𝛽ଶ + 𝛽ଷ ≠ 1        … (8.20) 

For testing of the above hypothesis, the t -statistic is given as follows: 

𝑡 = (௕మା௕య)ି(ఉమାఉయ)
ௌா(௕మା௕య)       … (8.21) 

The above follows t-distribution with (n – k) degrees of freedom.  

We can re-arrange equation (8.21) as follows:  

t = ௕మା௕యିଵ
ඥ௏(௕మ)ା௏(௕య)ାଶୡ୭୴(௕మ,௕య)

       … (8.22) 

The computed value of t-statistic is obtained by equation (8.22). We compare 
the computed value of t-ratio with the tabulated value of t-ratio. We read the 
t-table for desired level of significance and applicable degrees of freedom. 

If the computed value of t-ratio is greater than the tabulated value, then we 
reject the null hypothesis. If the computed value of t-ratio is less than the 
tabulated value, then we do not reject the null hypothesis and accept the 
alternative hypothesis.  

We need to interpret our results. If we reject the null hypothesis we conclude 
that the firms do not exhibit constant returns to scale. If we do not reject the 
null hypothesis, we conclude that the firms exhibit constant returns to scale. 

(b) Let us look again at the null hypothesis given at (8.19). 

𝐻଴: 𝛽ଶ + 𝛽ଷ = 1         

If the above restriction holds, then we should have  

𝛽ଶ = (1 − 𝛽ଷ)  

Let us substitute the above relationship in the Cobb-Douglas production 
function 

𝑙𝑛 𝑌௜ = 𝑙𝑛 𝛽ଵ + (1 − 𝛽ଷ)𝑙𝑛𝑋ଶ௜ + 𝛽ଷ𝑙𝑛𝑋ଷ௜ + 𝑢௜  … (8.23)  
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We can re-arrange terms in equation (8.23) to obtain 

𝑙𝑛 𝑌௜ − 𝑙𝑛𝑋ଶ௜ = 𝑙𝑛 𝛽ଵ − 𝛽ଷ𝑙𝑛𝑋ଶ௜ + 𝛽ଷ𝑙𝑛𝑋ଷ௜ + 𝑢௜   

Or, 

 𝑙𝑛(𝑌௜ 𝑋ଶ௜⁄ ) = 𝛽଴ + 𝛽ଷ𝑙𝑛(𝑋ଷ௜ 𝑋ଶ௜⁄ ) + 𝑢௜     … (8.24) 

Note that the dependent variable in the above regression model is output-labour 
ratio and the explanatory variable is capital-labour ratio. We can estimate the 
regression model given at equation (8.24) and find the OLS estimator of 𝛽ଷ.  

If 𝛽ଷ = 1 , then the Cobb-Douglas production will exhibit constant returns to 
scale.  

Therefore, we set the null hypothesis and alternative hypothesis as 

𝐻଴: 𝛽ଷ = 1 and 𝐻஺: 𝛽ଷ ≠ 1 

We apply t-test for individual parameters as mentioned in sub-section 8.3.1. If the 
null hypothesis is rejected we conclude that the firms do not exhibit constant 
returns to scale. 

8.6.2 Restricted Least Squares   

The t-test approach mentioned above may not be suitable in all cases. There may 
be situations where we have more than two parameters to be tested. In such 
circumstances we apply the F-test. This approach is called the restricted least 
squares. 

Let us consider the multiple regression model given at equation (8.11). 

𝑌௜ = 𝛽ଵ + 𝛽ଶ𝑋ଶ௜ + 𝛽ଷ𝑋ଷ௜ + 𝛽ସ𝑋ସ௜ + 𝑢௜     

Suppose we have to test the hypothesis that X3 and X4 do not influence the 
dependent variable Y. In such a case, the parameters 𝛽ଷ and 𝛽ସ should be zero. 

Recall that if we increase the number of explanatory variables in a regression 
model, there is an increase 𝑅ଶ. Recall further that 𝑅ଶ = ாௌௌ

்ௌௌ
. Thus, if two of the 

explanatory variables in equation (8.11) are dropped (i.e., their coefficients are 
zero), there will be a decrease in the value 𝑅ଶ. If the variables that X3 and X4 are 
relevant, there will be a significant decline the value of 𝑅ଶ. On the other hand, if 
the variables X3 and X4 are not relevant for the regression model, then the decline 
in the value of 𝑅ଶ will be insignificant. We use this property of the regression 
model to test hypotheses on a group of parameters. Therefore, while applying F-
test in restricted least squares we estimated the regression model twice: (i) the 
unrestricted model, and (ii) the restricted model. 

We proceed as follows: 

(i) Suppose there are k explanatory variables in the regression model. 

(ii)  Out of these k explanatory variables, suppose the first m explanatory 
variables are not relevant.  
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(iii) Thus our null hypothesis will be as follows: 

𝐻଴: 𝛽ଵ = 𝛽ଶ = ⋯ = 𝛽௠ = 0   … (8.25) 

(iv) The corresponding alternative hypothesis will be that the 𝛽s are not 
zero. 

(v) Estimate the unrestricted regression model given at (8.11). Obtain the 
residual sum of squares (RRS) on the basis of the estimated regression 
equation. Denote it as RSSUR. 

(vi) Estimate the restricted regression model by excluding the explanatory 
variables for which the parameters are zero. Obtain the residual sum 
of squares (RRS) from this restricted model. Denote it as RSSR. 

(vii) Our F-statistic is  

𝐹 = ோௌௌೃିோௌௌೆೃ/௠
ோௌ ೆೃ/(௡ି௞)

     … (8.26) 

The F-statistic at (8.26) follows F-distribution with degrees of 
freedom (m, n–k). 

(ix) Find out the computed value of F on the basis of equation (8.10). 
Compare it with the tabulated value of F (given at the end of the 
book). Read the tabulated F value for desired level of significance and 
applicable degrees of freedom.  

(x) If the computed value of F is greater than the tabulated value, then 
reject the null hypothesis.  

(xi) If the computed value is less than the tabulated value, do not reject the 
null hypothesis.  

As mentioned earlier, the residual sum of squares (RSS) and the coefficient of 
determination (𝑅ଶ) are related. Therefore, it is possible to carry out the F-test on 
the basis of  𝑅ଶ also. If we have the coefficient of determination for the 
unrestricted model (𝑅௎ோ

ଶ ) and the coefficient of determination for the restricted 
model (𝑅ோ

ଶ), then we can test the joint hypothesis about the set of parameters.  

The F-statistic will be  

𝐹 = ோೆೃ
మ ିோೃ

మ/௠
൫ଵିோೆೃ

మ ൯/(௡ି௞)
       … (8.27) 

which follows F-distribution with degrees of freedom (m, n–k). 

The conclusion to be drawn and interpretation of results will be the same as 
described  in points (x) and (xi) above. 
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CHOW TEST 
Many times we come across situations where there is a change in the pattern of 
data. The dependent and independent variables may not remain the same 
throughout the sample. For example, saving behaviour of poor and rich 
households may be different. The production of an industry may be different after 
a policy change. In such situations it may not be appropriate to run a single 
regression for the entire dataset. There is a need to check for structural stability of 
the econometric model. 

There are various procedures to bring in structural breaks in a regression model. 
We will discuss about the dummy variable cases in unit 9. In this Unit we discuss 
a very simple and specific case. 

Suppose we have data on n observations. We suspect that the first 𝑛ଵ 
observations are different from the remaining 𝑛ଶ observations (we have 𝑛ଵ +
𝑛ଶ = 𝑛). In this case run the following three regression equations: 

𝑌௧ = 𝜆ଵ + 𝜆ଶ𝑋௧ + 𝑢௧  (number of observations: 𝑛ଵ)   … (8.28) 

𝑌௧ = 𝑟ଵ + 𝑟ଶ𝑋௧ + 𝑣௧    (number of observations: 𝑛ଶ)   … (8.29) 

𝑌௧ = 𝛼ଵ + 𝛼ଶ𝑋௧ + 𝑤௧  (number of observations: 𝑛 = 𝑛ଵ + 𝑛ଶ) … (8.30) 

If both the sub-samples are the same, then we should have 𝜆ଵ = 𝑟ଵ = 𝛼ଵ 

and 𝜆ଶ = 𝑟ଶ = 𝛼ଶ.  If both the sub-samples are different then there will be a 
structural break in the sample. It implies the parameters of equations (8.28) and 
(8.29) are different. In order to test for the structural stability of the regression 
model we apply Chow test. 

We process as follows: 

(i) Run the regression model (8.28). Obtain residual sum of squares RSS1. 

(ii) Run regression model (8.29). Obtain residual sum of squares RSS2. 

(iii) Run regression model (8.30). Obtain residual sum of squares RSS3. 

(iv) In regression model (8.30) we are forcing the model to have the same 
parameters in both the sub-samples. Therefore, let us call the residual 
sum of squares obtained from this model RSSR. 

(v) Since regression models given at (8.28) and (8.29) are independent, let 
us call this the unrestricted model. Therefore, 𝑅𝑆𝑆௎ோ = 𝑅𝑆𝑆ଵ + 𝑅𝑆𝑆ଶ  

(vi) Suppose both the sub-samples are the same. In that case there should not 
be any difference between 𝑅𝑆𝑆௎ோ and 𝑅𝑆𝑆ோ. Our null hypothesis in that 
case is H0: There is not structural change (or, there is parameter 
stability). 

(vii) Test the above by the following test statistic: 
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  𝐹 = ோௌௌೃିோௌௌೆೃ)/௄
ோௌௌೆೃ/௡భା௡మିଶ௞

      … (8.31) 

 It follows F-distribution with degrees of freedom 𝑘, (𝑛ଵ + 𝑛ଶ − 2𝑘) , 
where k is the number of explanatory variables in the regression model. 

(viii) Check the F-distribution table given at the end of the book for desired 
level of significance and applicable degrees of freedom. 

(ix) Draw the inference on the basis of computed value of the F-statistic 
obtained at step(vii). 

(x) If the computed value of F is greater than the tabulated value, then reject 
the null hypothesis.  

(xi) If the computed value is less than the tabulated value, do not reject the 
null hypothesis.  

The Chow test helps us in testing for parameter stability. Note that there are three 
limitations of the Chow test. 

(i) We assume that the error variance 𝜎ଶ  is constant throughout the 
sample. There is no difference in the error variance between the sub-
samples.  

(ii) The point of structural break is not known to us. We assume that point 
of structural change. 

(iii) We cannot apply Chow test if there are more than one structural 
break. 

8.8 PREDICTION  

In Unit 5 we explained how prediction is made on the basis of simple regression 
model. We extend the same procedure to multiple regression models. As in the 
case of simple regression models, there are two types of prediction in multiple 
regression models.  

If we predict an individual value of the dependent variable corresponding to 
particular values of the explanatory variables, we obtain the ‘individual 
prediction’. When we predict the expected value of Y corresponding to particular 
values of the explanatory variables, it is called ‘mean prediction’. The expected 
of Y in both the cases (individual prediction and mean prediction) is the same. 
The difference between mean and individual predictions lies in their variances.  

8.8.1 Mean Prediction 

Let 

  X଴ =

⎣
⎢
⎢
⎢
⎡

1
𝑋଴ଶ
𝑋଴ଷ

⋮
𝑋଴௞⎦

⎥
⎥
⎥
⎤

       (8.32) 
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be the vector of values of the X variables for which we wish to predict 𝑌෠଴. 

The estimated multiple regression equation, in scalar form, is 

𝑌෠௜ = 𝛽መଵ + 𝛽መଶ𝑋ଶ௜ + 𝛽መଷ𝑋ଷ௜ + ⋯ 𝛽መ௞𝑋௞௜ + 𝑢௜     ... (8.33) 

which in matrix notation can be written compactly as  

𝑌෠௜ = 𝑋௜
′𝛽መ           ... (8.34) 

where 

 𝑋௜
′ = [1  𝑋ଶ௜ 𝑋ଷ௜ … 𝑋௞௜]       ... (8.35) 

and 

𝛽መ =

⎣
⎢
⎢
⎡𝛽መଵ

𝛽መଶ
⋮

𝛽መ௞⎦
⎥
⎥
⎤
        ... (8.36) 

Equation (8.34) is the mean predication of Yi corresponding to given Xi
’. 

If Xi
’ is as given in (8.35), then (8.34) becomes 

 ൫𝑌෠௜ห𝑋଴
′ ൯ = 𝑋଴

′ 𝛽መ          ... (8.37) 

where the values of x0 are fixed. You should note that (8.36) gives an unbiased 
prediction of 𝐸൫𝑌෠௜ห𝑋଴

′ ൯, since 𝐸൫𝑋଴
′ 𝛽መ൯ = 𝑋଴

′ 𝛽መ.  

Variance of Mean Prediction 

The formula to estimate the variance of ൫𝑌෠଴ห𝑋଴
′ ൯ is as follows: 

 var ൫𝑌෠଴ห𝑋଴
′ ൯= 𝜎ଶ𝑋଴

ᇱ (𝑋ᇱ𝑋)ିଵ𝑋଴     ... (8.38) 

where  𝜎ଶ is the variance of 𝑢௜  

 𝑋଴
ᇱ  are the X variables for which we wish to predict, and 

since we do not know the error variance ( 𝜎ଶ), we replace it by its unbiased 
estimator 𝜎ොଶ. 

8.8.2 Individual Prediction  

As mentioned earlier, expected value of individual prediction is the same as that 
of individual prediction, i.e., 𝑌෠௜. The variance of the individual prediction is  

var(𝑌଴|𝑋଴) = 𝜎ଶ[1 + 𝑋ᇱ
଴(𝑋ᇱ𝑋)ିଵ𝑋଴]    ... (8.39) 

where var(𝑌଴|𝑋଴)stands for  2
00 X|ŶYE  . In practice we replace 2 by its 

unbiased estimator 2̂ .  
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Check Your Progress 4 

1)   Consider a Cobb-Douglas production. Write down the steps of testing the 
hypothesis that it exhibits constant returns to scale.  
.........................................................................................................................

.........................................................................................................................

.........................................................................................................................

......................................................................................................................... 

2)   Write down the steps of carrying out Chow test.  
.........................................................................................................................

.........................................................................................................................

.........................................................................................................................

......................................................................................................................... 

3)  Point out why individual prediction has higher variance than mean 
prediction. 
.........................................................................................................................

.........................................................................................................................

.........................................................................................................................

......................................................................................................................... 

8.9   LET US SUM UP  

This unit described the assumptions of classical multiple regression that fortifies 
normality of error term also tested by Jarque-Bera Test (J-Test for Normality). 
The testing of hypothesis about individual coefficients is distinguished from the 
overall significance test in the unit. The unit also describes the testing of equality 
of two regression coefficients. Later the structural stability is tested using Chow 
test. The multiple regression is also used for prediction of dependent variables for 
given values of independent variables. Both individual and joint hypothesis 
testing is described in the unit. Various tests such as likelihood ratio (LR), Wald 
(W) and Lagrange Multiplier Test (LM) are explained in the unit 

8.10  ANSWERS/ HINTS TO CHECK YOUR 
PORGRESS EXERCISES  

Check Your Progress 1 

1) Refer to Sub-Section 8.2.1 and answer. 

2) The Jarque-Bera test statistic is given at equation (8.2). Describe how 
thetest is carried out. 
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Check Your Progress 2 

1) Refer to Sub-Section 8.3.1 and answer. Decide on the null and alternative 
hypotheses. Describe the staps you would follow. 

2) Refer to Sub-Section 8.3.2 and answer. 

Check Your Progress 3 

1) It can be tested by F-test. See Section 8.4 for details.  

2) Refer to Sub-Section 8.5 and answer. 

Check Your Progress 4 

1) We have explained in Sub-Section 8.6.1. Refer to it. 

2) Refer to Sub-Section 8.7 and answer. 

3) Refer to Sub-Section 8.8 and answer. It has the same logic as in the case of 
two variable models discussed in Section 5.7 of Unit 5. 

 

 

  



 

UNIT 9  EXTENSION OF REGRESSION  
  MODELS: DUMMY VARIABLE  
  CASES  
  

Structure  

9.0  Objectives 

9.1  Introduction  

9.2  The Case of Single Dummy: ANOVA Model 

9.3  Analysis of Covariance (ANCOVA) Model  

9.4  Comparison between Two Regression Models  

9.5  Multiple Dummies and Interactive Dummies 

9.6  Let Us Sum Up 

9.7  Answers/Hints to Check Your Progress Exercises 
 

9.0 OBJECTIVES 
After reading this unit, you will be able to: 

 define a qualitative or dummy variable; 

 discuss the ANOVA model with a single dummy as exogenous variable; 

 specify an ANCOVA model with one quantitative and one dummy 
 variable;  

 interpret the results of dummy variable regression models; 

 differentiate between ‘differential intercept coefficient’ and ‘differential 
 slope coefficient;  

 describe the concepts of ‘concurrent, dissimilar and parallel’ regression 
 models that you encounter while considering ‘differential slope  dummies’; 
 and 

 explain how more than two dummies and interactive dummies can be 
 formulated into a regression model. 

9.1 INTRODUCTION 
In real life situations, some variables are qualitative. Examples are gender, 
choices, nationality, etc. Such variables may be dichotomous or binary, i.e., with 
responses limited to two such as in ‘yes’ or ‘no’ situations. Or they may have 
more than two categorical responses. We need methods to include such variables 
in the regression model. In this unit, we consider some such cases. We limit this 
unit to consider regressions in which the dependent variable is quantified. You 
may note in passing that when the dependent variable itself is a dummy variable, 
we have to deal with them by models such as Probit or Logit. In such models, the 
                                                             
 Dr. Pooja Sharma, Assistant Professor, Daulat Ram College, University of Delhi and Prof. B S 

Prakash, Indira Gandhi National Open University, New Delhi  



 

117 
 

Extension of Regression 
Models: Dummy 

Variable Cases 

OLS method of estimation does not apply. In this unit, we will not consider such 
cases. You will study about them in the course ‘BECE 142: Applied 
Econometrics’.  

In this unit, we consider only such cases in which the independent variable is a 
dummy variable. Qualitative variables are not straightaway quantified. By 
treating them as dummy variables we can make them quantified (or categorical). 
For instance, consider variables such as male or female, employed or 
unemployed, etc. These are quantifiable in the sense that by treating them as 1 if 
‘female, and 0 if ‘male’. Similar examples could be 1 if yes and 0 if no; 1 if 
employed and 0 if unemployed, etc. In the above, we have converted a qualitative 
response into quantitative form. Thus, the qualitative variable is now quantified. 
Such regressions could be a simple regression, i.e., there is only one independent 
variable which is qualitative and treated as dummy variable. Or there could be 
two independent variables, one of which can be treated as dummy and the other 
is its covariant, i.e., there is a close relationship with the variable treated as 
dummy. For instance, pre-tax income of persons can be classified above a 
threshold level and treated as dummy variable, i.e., above or below the threshold 
level income with response taken as 1 or 0. Now, the post-tax income, which is a 
co-variant of pre-tax income, can be considered by its actual quantified value. 
There could be similar extension of situations where you have to consider 
multiple dummies and cases where you have to consider interactive dummies. 
The nature of such regressions, particularly for their inference or interpretational 
interest, is what we consider in the present unit.  

9.2 THE CASE OF SINGLE DUMMY: ANOVA 
 MODEL 
We first consider a simple regression model with only one independent variable. 
Further, this independent variable is a dummy variable such as: 

𝑌௜ = 𝛽ଵ + 𝛽ଶ𝐷௜ + 𝑢௜       … (9.1) 

Here, we take Y as the annual expenditure on food and iD  as gender taking the 
values 0 if the person is male and 1 if female. The Di’s are thus fixed and hence 
non-stochastic. Now, if we assume that 𝑢𝑖~𝑁൫0, 𝜎2൯, the OLS method can be 

applied to estimate the parameters in (9.1). If we do this, the mean food 
expenditure for males and females are respectively given by: 

E (Yi │ Di = 0) = β1 + β2(0) = β1      … (9.2) 

E (Yi │ Di = 1) = β1 + β2       … (9.3) 

Here, β1 gives the average or mean food expenditure of males. It is the category 
for which the dummy variable is given the value 0. The slope coefficient β2 tells 
us by how much the mean food expenditure of females differ from that of the 
mean food expenditure of males. Hence, β1 + β2 gives the mean food expenditure 
for females. In view of this, it is not correct to call β2 as the slope coefficient 
since there is no continuous regression line here. Hence, β2 is the ‘differential 
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intercept coefficient’. It tells us by how much the value of intercept term differs 
between the two categories. A question that arises now is, what would have 
happened if we had interchanged the assignment of ‘0’ between the two 
categories of males and females ( i.e., if we had assigned the value ‘0’ to 
females). You may note that, so long as we have only two categories as in the 
present instance, i.e., it is a case of simple regression with only one independent 
variable taken as a dummy variable Di with the category of responses 
dichotomous or binary, it basically does not matter which category gets the value 
of 1 and which gets the value 0. However, some minor difference would be there. 
Let us see what this is. 

The category to which we assign the value 0 is called as the base category. It is 
also called by alternative names such as reference or benchmark or the 
comparison category. In such an assignment, the intercept value represents the 
mean value of the category that gets the value 0 (which is males in our case 
above). What equation (9.3) tells us is, depending on such an assignment, the 
mean value of expenditure on food for females is to be obtained by adding the 
‘slope coefficient to the intercept value’. If the assignment of dummy is made the 
other way, i.e., females 0 and males 1, we see a change in the numerical value of 
the intercept term and its t value. Barring this, the R2 value, the absolute value of 
the estimated dummy variable coefficient and its standard error, will remain the 
same. Let us see this with the help of an example for better understanding.  

Consider the data on ‘expenditure on food’ and income for males and females as 
in Table 9.1. The data are averages based on the actual number of people (who 
are in thousands) in different age groups. We first construct Table 9.2 from the 
data in Table 9.1 as below. 

Table 9.1: Data on Income and Food Expenditure by Gender 

(Figures in $) 

Age Food 
Expenditure 

(female) 

Income 
(female) 

Food 
Expenditure 

(male) 

Income 
(male) 

< 25 1983 11557 2230  11589 

25-34 2987 29387 3757 33328 

35-44 2993 31463 3821 36151 

45-54 3156 29554 3291 35448 

55-64 2706 25137 3429 32988 

> 65 2217 14952 2533 20437 

Source: Table 6-1, Chapter 6, Gujarati.  
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Table 9.2: Food Expenditure in Relation to Income and Gender 

Observation Food Expenditure 
($)  

Income ($) Gender 

1 1983 11557 1 

2 2987 29387 1 

3 2993 31463 1 

4 3156 29554 1 

5 2706 25137 1 

6 2217 14952 1 

7 2230 11589 0 

8 3757 33328 0 

9 3821 36151 0 

10 3291 35448 0 

11 3429 32988 0 

12 2533 20437 0 

 Source: Table 6-2, Chapter 6, Gujarati. 

Results of food expenditure regressed on the gender dummy variable (without 
taking into account the income variable at this stage) presents the following 
results. 

  𝑌ప෡  = 3176.833  –  503.1667 Di 

  se = (233.0446)  (329.5749) 

  t = (13.6318)   (–1.5267)  R2 = 0.1890 

The results show that the mean expenditure of males is 3177 $ and that of 
females is (3177 – 503 = 2674 $). The estimated Di is not statistically significant 
(since its t value is only –1.53). This means that the difference in the food 
expenditure between gender is not statistically significant. Recall that we have 
assigned the value ‘0’ to males. Hence, the intercept value represents the mean 
value for males. In this assignment, to get the mean value of food expenditure of 
females, we add the value of the coefficient of the dummy variable to the 
intercept value. Now, let us re-assign the value ‘0’ to females and ‘1’ to males. 
The regression results that we get are the following: 
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𝑌ప෡  =  2673.667  +  503.1667 Di 

se =  (233.0446)   (329.5749) 

t =  (11.4227)   (–1.5267)   R2 = 0.1890 

Thus, we notice that the mean food consumption expenditures of the two genders 
have remained the same. The R2 value is also the same. The absolute value of the 
dummy variable coefficient and their standard errors are also the same. The only 
change is in the numerical value of the intercept term and its t value.  

Another question that we may get is: since we have two categories, male and 
female, can we assign two dummies to them? This means we consider the model 
as: 

Yi = β1 + β2 D2i + β3Di + ui      … (9.4) 

where Y is expenditure on food, D2 = 1 for female and 0 for male and D3 = 1 for 
male and 0 for female. Essentially, we are trying to see whether we can assign 
two dummies for male and female separately? The answer is ‘no’. To know the 
reason for this, consider the data for a sample of two females and three males, for 
which the data matrix is as in Table 9.3. We see that D2 = 1 – D3 or D3 = 1 – D2. 
This is a situation of perfect collinearity. Hence, we must always use only one 
dummy variable if a qualitative variable has two categories, such as the gender 
here.  

Table 9.3: Data Matrix for the Equation  

 

 

 

 

 

 

 

 

A more general rule is: if a model has the common intercept β1, and the 
qualitative variable has m categories, then we must introduce only (m – 1) 
dummy variables. If we do not do this, we get into a problem of estimation called 
as the ‘dummy variable trap’. Finally, note that when we have a simple 
regression model with only one dummy variable as considered here, the model 
considered is also called as the ANOVA model. This is because there is no 
second variable from which we are seeking to know the impact or variability on 
the dependent variable. When we have this, we get what we call as an ANCOVA 
model. We take up such a case in the next section. 

Gender Intercept D2 D3 

Male Y1 1 0 1 

Male Y2 1 0 1 

Female Y3 1 1 0 

Male Y4 1 0 1 

Female Y5 1 1 0 



 

121 
 

Extension of Regression 
Models: Dummy 

Variable Cases 

9.3 ANALYSIS OF COVARIANCE (ANCOVA) 
 MODEL 
In economic analysis, it is common to have among explanatory variables some of 
which are qualitative and some others quantitative. Such models are called as 
Analysis-of-Covariance (ANCOVA) models. Here, we shall consider a model 
that has both a quantitative and a dummy variable among the regressors. In 
general, regression models containing a combination of quantitative and 
qualitative variables are called ANCOVA models. Here, the quantitative 
variables are called covariates or control variables. ANCOVA models are an 
extension of the ANOVA models. They provide a method of statistically 
controlling the effects of covariates (i.e., a quantitative explanatory variable) in a 
model that includes both the type of variables with the qualitative variable treated 
as a dummy variable. The quantitative variable considered is usually a covariate 
in the sense that it bears close association with the main variable. Because of this, 
exclusion of covariates from a model results in model specification error. In the 
example considered above, we regressed ‘food expenditure’ on only gender 
dummy [𝑌௜ = 𝛽ଵ + 𝛽ଶ𝐷௜ + 𝑢௜]. Now, let us consider another variable, ‘income 
after taxes’, i.e., disposable income (a covariate of food expenditure) as an 
explanatory variable (Xi). The model now is  

𝑌௜ = 𝛽ଵ + 𝛽ଶ𝐷 + 𝛽ଷ𝑋௜ + 𝑢௜      … (9.5) 

where Y = expenditure on food ($), X = after tax income ($), D = 1 for female and 
= 0 for male. Let us now consider, for better appreciation, the result for the 
regression in equation (9.5) obtained from the data in Table 9.2 as follows:  

𝑌௖ = 1506.244 − 228.9868𝐷௜ + 0.0589𝑋௜  
t = (8.0115)          (–2.1388)         (9.6417) 
R2 = 0.9284 

The dummy variable coefficient is statistically significant. Therefore, we reject 
the null hypothesis that there is no difference in the average value of expenditure 
on food for male and female. In other words, we conclude that gender has a 
significant impact on consumption or food expenditure. Note that this difference 
in consumption expenditure is inferred holding the effect of after-tax income 
constant. Likewise, holding the gender differences constant, the after tax income 
coefficient is significant. The slope coefficient for ‘after tax income’ indicates 
that the mean food expenditure [i.e., the marginal propensity to consume (MPC)] 
increases by 6 cents for every additional dollar of increase in the disposable 
income. Note that since we have taken ‘0’ for males, the intercept term relates to 
the MPC for males. For female MPC, we have to add the intercept value to the 
coefficient of gender dummy (i.e., 1506.2 – 228.9 = 1277.3). Thus, the equations 
for the MPC of females and males can be respectively written as: 

Mean food expenditure for females: ii X0589.02574.1277Ŷ   

Mean food expenditure for males: ii X0589.02440.1506Ŷ   
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Since the MPC or the slope is same for both the gender, the two regressions are 
parallel as in Fig. 9.1 below. 

 

  

 

 

 

 

 

 

 

 
 
 
 

Fig. 9.1 Mean Food Expenditure for Male and Female 

The model signifies the role and the impact of both the type of variables 
(quantitative and qualitative) in explaining a dependent variable. Specifically, in 
the example considered, the after tax expenditure is seen to affect the food 
expenditure of both males and females.   

Check Your Progress 1 [answer questions in about 50-100 words] 

1) Define a qualitative variable. 
 .............................................................................................................................. 

 .............................................................................................................................. 

 .............................................................................................................................. 

 .............................................................................................................................. 

 .............................................................................................................................. 

2) Specify a regression model with a single dummy variable. Mention its 
 features from the point of view of interpretation of estimated coefficients. 
 .............................................................................................................................. 

 .............................................................................................................................. 

 .............................................................................................................................. 

 .............................................................................................................................. 

 ..............................................................................................................................   

Fo
od

 E
xp

en
di

tu
re

 

Male 

Female 

After-tax expenditure 
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3) What happens if the base value is reassigned for the dummy variable, say 
 gender, in a simple regression model as in equation (9.1)? 

 ............................................................................................................................. 

 .............................................................................................................................

 .............................................................................................................................

 .............................................................................................................................

 ............................................................................................................................. 

4) What is meant by ‘dummy variable trap’? How do we avoid it? 
 .............................................................................................................................

 .............................................................................................................................

 .............................................................................................................................

 .............................................................................................................................

 ............................................................................................................................. 

5) Distinguish between an ANOVA model and an ANCOVA. 
 .............................................................................................................................

 .............................................................................................................................

 .............................................................................................................................

 .............................................................................................................................

 ............................................................................................................................. 

6) What is an advantage of ANCOVA model? What is a consequence of 
 omitting the inclusion of a covariant in an ANOVA model? 
 .............................................................................................................................

 .............................................................................................................................

 .............................................................................................................................

 .............................................................................................................................

 ............................................................................................................................ 

7) Specify the general form of an ANCOVA model with one qualitative and one 
 quantitative variable. What does the slope oefficient for the quantitative 
 variable considerd indicate in general? 

 .............................................................................................................................

 .............................................................................................................................

 .............................................................................................................................

 .............................................................................................................................

 ............................................................................................................................. 
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 MODELS 

In the example considered above, i.e., for both the ANOVA and the ANCOVA 
models, we saw that the slope coefficients were same but the intercepts were 
different. This raises the question on whether the slopes too could be different? 
How do we formulate the model if our interest is to test for the difference in the 
slope coefficients too? In order to capture this, we introduce a ‘slope drifter’. For 
the example of consumption expenditure for male or female considered above, let 
us now proceed to compare the difference in the consumption expenditure by 
gender by specifying the model with dummies as follows:  

𝑌௜ = 𝛽ଵ + 𝛽ଶ𝐷௜ + 𝛽ଷ𝑋௜ + 𝛽ସ(𝐷௜𝑋௜) + 𝑢௜     … (9.6) 

Note that the additional variable added is DiXi which is in multiplicative or 
interactive form. In (9.6), we have taken Di = 0 for males and Di = 1 for females. 
Now, the ‘mean food expenditure’ for males is given by: 

E (Yi │ Di = 0, Xi) = β1 + β3Xi       … (9.7)  

{since Di = 0} 

The ‘mean food expenditure’ for females is given by:  

E (Yi │ Di = 1, Xi) = β1 + β2Di + (β3 + β4Di) Xi  

  = (β1 + β2) + (β3 + β4) Xi       … (9.8)  

{since Di = 1} 

In equation (9.8), (β1 + β2) gives the mean value of Y for the category that 
receives the dummy value of 1 when X is zero. And, (β3 + β4) gives the slope co-
efficient of the income variable for the category that receives the dummy value of 
1. Note that the introduction of the dummy variable in the ‘additive form’ enables 
us to distinguish between the intercept terms of the two groups. Likewise, the 
introduction of the dummy variable in the interactive (or multiplicative) form 
(i.e., 𝐷௜𝑋௜) enables us to differentiate between the slope coefficients (or terms) of 

the two groups. Depending on the statistical significance of the differential 
intercept coefficient, β2, and the differential slope coefficient, β4, we can infer 
whether the female and male food expenditure functions differ in their intercept 
values, or their slope values, or both. There can be four possibilities as shown in 
Fig. 9.2. Fig. 9.2 (a) shows that there is no difference in intercept or the slope 
coefficient of the two food expenditure regressions. Such regression equations 
are called ‘Coincident Regressions’.  

 



 

125 
 

Extension of Regression 
Models: Dummy 

Variable Cases 

  

 

  

 

 

 

 

 

 

 

 

  
 
 
 
 
 
 
 
 
 
 
 
                    Fig 9.2 Comparison of Regression Equations  

Fig. 9.2 (b) shows that the two slope coefficients are the same but intercepts are 
different. Such regressions are referred to as ‘Parallel Regressions’. Fig. 9.2 (c) 
shows that the two regressions have the same intercepts but  

different slopes. Such regressions are referred as ‘Concurrent Regressions’. Fig. 
9.2 (d) shows that the two intercepts and the two slope coefficients are both 
different. Such regressions are called ‘Dissimilar Regressions’. 

9.5 MULTIPLE DUMMIES AND INTERRACTIVE 
 DUMMIES 
We often might require to consider more than one dummy variables. Besides, 
there could be cases where we might be interested in seeing for the impact of 
dummy variable interactions. Let us consider a case as given below. 

Yi = β1 + β2D2i + β3D3i + β4Xi + ui       … (9.7) 

 

0 0 

0 0 

Y Y 

Y 

X X 

X X 

 (c) Concurrent Regressions                       (d) Dissimilar Regressions 

(a) Coincident Regressions                      (b) Parallel Regressions 
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where Y is income, X is education measured in number of years of schooling, D2 
is gender (0 if male, 1 if female), D3 is if in reserved segment or group (e.g. 
SC/ST/OBC) taking the value 0 if ‘not in reserved segment’, i.e., in general 
segment and 1 if ‘in reserved segment’. Here, gender (D2) and reservation (D3) 
are qualitative variables and X is quantitative variable. In this formulation (for 
example, equation 9.7) we have made an implicit assumption that the differential 
effect of gender is constant across the two segments of reservation. We have 
likewise assumed that the differential effect of reservation is constant across the 
two genders. This means if the average income is higher for males than for 
females, it is so whether the person is in the general segment or in the reservation 
segment. Likewise, it is assumed here that if the average income is different 
between the two reservation segments, it is so irrespective of gender. However, in 
many cases, such assumptions may not be tenable. This means, there could be 
interaction between gender and reservation dummies. In other words, their effect 
on average income may not be simply additive as in (9.7) but could be 
multiplicative. If we wish to consider for this interactive effect, we must specify 
the model as follows: 

Yi = β1 + β2D2i + β3D3i + β4(D2i D3i) +β5Xi + ui    … (9.8) 

In equation (9.8), the dummy variable D2iD3i is called as ‘interactive or 
interaction dummy’. It represents the joint or simultaneous effect of two 
qualitative variables. Taking expectation on both sides of equation (9.8), i.e., by 
considering the average effect on income across gender and reservation, we get: 

E (Yi │ D2i =1, D3i = 1, Xi) = β1 + β2 + β3 + β4 + β5Xi   … (9.9) 

Equation (9.9) is the average income function for female reserved category 
workers where β2 is the differential effect of being female, β3 is the differential 
effect of being in the reserved segment and β4 is the interactive effect of being 
both a female and in reserved segment. Depending on the statistical significance 
of various dummies, we need to make relevant inferences. The specification can 
easily be generalized for more than one quantitative variable and more than two 
qualitative variables. 

Check Your Progress 2 [answer questions within the given space in about 90-
100 words] 

1) What is meant by a ‘slope drifter’? When is it introduced and for what use? 
 Specify a general model with such a ‘slope drifter’ and comment on the 
 additional variable introduced. 

 .............................................................................................................................

 .............................................................................................................................

 .............................................................................................................................

 .............................................................................................................................

 ............................................................................................................................. 
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2) Differentiate between the four type of regressions that we might get when 
 considering a model of the type in equation (9.6) with two slope drifters 𝛽ଶ 
 and 𝛽ସ as therein. 
 .............................................................................................................................

 .............................................................................................................................

 .............................................................................................................................

 .............................................................................................................................

 ............................................................................................................................. 

3) List the four types of regression models, with dummy variables to 
 accommodate different cases or situations, as we have considered in this unit. 
 Specify their difference by their name and features. 
 .............................................................................................................................

 .............................................................................................................................

 .............................................................................................................................

 .............................................................................................................................

 ............................................................................................................................. 

9.6  LET US SUM UP 
This unit makes a distinction between qualitative and quantitative variables. It 
has considered three types of models in which the focus is kept on inclusion of 
qualitative variables in the regression models. The first of such models is 
considered is a simple regression model. In this, we have considered only one 
dummy variable, as an independent variable, on the RHS of the regression 
equation. This equation is of the form: 𝑌௜ = 𝛽ଵ + 𝛽ଶ𝐷௜ + 𝑢௜. Analysis in this 
form is called as ANOVA. Quite often, we would be committing a specification 
bias if we consider the regression model in this form. This happens because the 
variable Yi will be clearly related to a variable Xi which is a quantitative variable. 
To accommodate this, we considered the second type of model in which we 
included a co-variant (Xi) into the regression equation: 𝑌௜ = 𝛽ଵ + 𝛽ଶ𝐷 + 𝛽ଷ𝑋௜ +
𝑢௜. Analysis in this form is called as ANCOVA. In both these type of models, our 
focus was only on observing the significance of difference in the intercepts. But 
in practice, we do encounter a number of situations in which not only the 
intercept, but the slope too could vary between categories. To allow for this kind 
of situation, we considered a third type of model in which we accommodated for 
the interactive effect of the ‘dummy variable with the quantitative variable’, i.e., 
DiXi. The regression model considered for this kind of an analysis is of the 
form: 𝑌௜ = 𝛽ଵ + 𝛽ଶ𝐷௜ + 𝛽ଷ𝑋௜ + 𝛽ସ(𝐷௜𝑋௜) + 𝑢௜. In this situation, we noted that we 
could come across four possibilities viz. coincidental, parallel, concurrent and 
dissimilar regressions. We have finally considered the case where a regression 
model may have to be formulated to accommodate more than one qualitative 
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variable and a case where we might be interested in examining for the interactive 
effect of the two qualitative variables. For this, we considered models such as Yi 
= β1 + β2D2i + β3D3i + β4(D2i D3i) +β5Xi + ui. 
 

9.7 ANSWERS/ HINTS TO CHECK YOUR PROGRESS 
 EXERCISES 
Check Your Progress 1 

1) A qualitative variable is one which has a categorical response such as yes/no 
 or employed/unemployed or male/female. If the response is limited to two, 
 as in these cases, it is called as a dichotomous variable. The responses can be 
 more than two. But they may be classified as 1, 2, 3, …….. Such responses 
 are unambiguous or categorical. Hence, a qualitative variable is also called 
 as dummy variable or categorical variable. 
 

2) The model in this case can be 𝑌௜ = 𝛽ଵ + 𝛽ଶ𝐷௜ + 𝑢௜. We are considering the 
 dependent variable Yi as quantitative variable. The Di’s are thus fixed and 
 hence non-stochastic. Di is taken a dichotomous, i.e., it takes the values 0 
 and 1. In such cases, the factor or entity which is assigned the value 0, is 
 called as the base category. The estimated value of the mean of Yi, given Di 
 = 0, is given by 𝛽ଵ. Here, 𝛽ଶ is not strictly the slope coefficient but is the 
 ‘differential intercept coefficient’. The estimated value of the mean of Yi, 
 given Di = 1, is given by 𝛽ଵ + 𝛽ଶ.  
 

3) The mean value of Yi for the two gender classes, the R2 value, the absolute 
 value of the estimated dummy variable coefficient and the standard errors 
 will be the same. The numerical value of the intercept term and its t value 
 will change. 
 

4) The number of responses to the dummy variable is called as ‘categories’ of 
 response. If the dummy variable refers to gender of the respondent, there are 
 two categories of response viz. male and female. If we assign two separate 
 dummies in such cases, we encounter a situation of perfect collinearity. 
 Hence, we will not get unique estimates or one of the two parameters is not 
 estimable. This situation is called as ‘dummy variable trap’. To avoid this 
 situation, the general rule is if we have m categories, we limit the number of 
 dummies to ‘m – 1’. The models should also have a common intercept β1. 
 

5) If the regression model considered has only one independent variable in 
 general, and that variable is a dummy variable as considered here in 
 particular, then the variation or the sources of variability that is sought to be 
 identified for the dependent variable is limited to that one variable. In such 
 cases, the regression model considered is called as an ANOVA model. If the 
 independent variables considered are two, with one considered as dummy 
 variable, and the other variable considered is related to the dummy variable, 
 then such models are called as ANCOVA model. 
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In other words, regression models in which some independent variables are 
qualitative and some others are quantitative, are called as ANCOVA models.  

 

6) The advantage is that ANCOVA models provide a method of statistically 
 controlling the effects of covariates. The consequence of excluding a 
 covariant from being included in the model is that the model suffers from 
 ‘specification error’. The consequence of committing specification errors are 
 that the ideal assumptions required for the OLS estimators to be efficient are 
 violated. Consequently, they lose out on their efficiency properties. 
 

7) The general form of the model is like: 𝑌௜ = 𝛽ଵ + 𝛽ଶ𝐷 + 𝛽ଷ𝑋௜ + 𝑢௜. The slope 
 coefficient indicates the rate of increase (or decrease) in the ‘marginal 
 propensity to consume (MPC)’. This is when the dependent variable Y relates 
 to a consumption variable like expenditure on food and the quantitative 
 independent variable is like disposable income as considered here.  

Check Your Progress 2  

1) In regression models with one intercept and one slope coefficients, our 
 interest might be to test to know whether: (i) the intercept terms are 
 statistically different and (ii) the slope coefficients are statistically 
 different? For investigating the second question, we need to introduce  what 
 is called as a ‘slope drifter’. The model specified with such a drifter would 
 be like: 𝑌௜ = 𝛽ଵ + 𝛽ଶ𝐷௜ + 𝛽ଷ𝑋௜ + 𝛽ସ(𝐷௜𝑋௜) + 𝑢௜.The additional variable 
 introduced here is DiXi. It is a multiplicative variable in the interactive form. 
 Here 𝛽ଶ and 𝛽ସ are the two slope drifters which helps us infer for the 
 statistical difference in the intercept values and the slope values respectively. 
 

2) We get a ‘coincident regression’ when there is no difference both in intercept 
 as well as the slope. We get a ‘parallel regression’ when the two intercept 
 terms are different but the two slope coefficients are the same. We get a 
 ‘concurrent regression’ when the two regressions have the same intercept but 
 different slopes. We get two ‘dissimilar regressions’ when both the intercept 
 terms and the slope coefficients are different.  
 

3) (i) 𝑌௜ = 𝛽ଵ + 𝛽ଶ𝐷௜ + 𝑢௜. (ii) 𝑌௜ = 𝛽ଵ + 𝛽ଶ𝐷 + 𝛽ଷ𝑋௜ + 𝑢௜. (iii) 𝑌௜ = 𝛽ଵ +
           𝛽ଶ𝐷௜ + 𝛽ଷ𝑋௜ + 𝛽ସ(𝐷௜𝑋௜) + 𝑢௜ . (iv) Yi = β1 + β2D2i + β3D3i + β4(D2i D3i)  
 + β5Xi + ui. The first is the ANOVA model in which we have considered only 
 one single dummy variable as the independent variable. The second is the 
 ANCOVA model in which we have considered one qualitative dummy 
 variable and another quantitative exogenous variable related to the dummy 
 variable, the omission of which would lead to a ‘specification bias’. The third 
 involves an interactive variable (𝐷௜𝑋௜) in which we try to see whether both 
 the slopes and the intercept coefficients differ. In this, there is a possibility of 
 getting four different type of regressions viz. coincident, parallel, concurrent 
 and dissimilar regressions. The fourth situation considered involves a 
 interactive dummy variable like: Yi = β1 + β2D2i + β3D3i + β4(D2i D3i) +β5Xi + 
 ui.  
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10.6  Let Us Sum Up 

10.7  Answers/ Hints to Check Your Progress Exercises 

10.0 OBJECTIVES 
After going through this unit, you should be able to 

 explain the concept of multicollinearity in a regression model; 

 comprehend the difference between the near and perfect multicollinearity; 

 describe  the consequences of multicollinearity; 

 1explain how multicollinearity can be detected; and 

 describe the remedial measures of multicollinearity; and  

 explain the concept of ridge regression. 

10.1  INTRODUCTION  
The classical linear regression model assumes that there is no perfect 
multicollinearity. Multicollinearity means the presence of high correlation 
between two or more explanatory variables in a multiple regression model. 

                                                
 Dr. Pooja Sharma, Assistant Professor, Daulat Ram College, University of Delhi  
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Multicollinearity Absence of multicollinearity implies that there is no exact linear relationship 
among the explanatory variables. The assumption of no perfect multicollinearity 
is very crucial to a regression model since the presence of perfect 
multicollinearity has serious consequences on the regression model. We will 
discuss about the consequences, detection methods, and remedial measures for 
multicollinearity in this Unit. 

10.2  TYPES OF MULTICOLLINEARITY  
Multicollinearity could be of two types: (i) perfect multicollinearity, and (ii) 
imperfect multicollinearity. Remember that the division is according to the 
degree or extent of relationship between the explanatory variables. The 
distinction is made because of the nature of the problem they pose. We describe 
both types of multicollinearity below. 

10.2.1 Perfect Multicollinearity  

In the case of perfect multicollinearity, the explanatory variables are perfectly 
correlated with each other. It implies the coefficient of correlation between the 
explanatory variables is 1. For instance, suppose want to derive the demand curve 
for a good Y. We assume that quantity demanded (Y) is a function of price (𝑋ଶ)    
and income (𝑋ଷ). In symbols,  

𝑌 = 𝑓(𝑋ଶ, 𝑋ଷ)  where 𝑋ଶ   is price of good Y and 𝑋ଷ  is the weekly consumer 
income.  

Let us consider the following regression model (population regression function): 

𝑌௜ = 𝐴ଵ + 𝐴ଶ𝑋ଶ௜ + 𝐴ଷ𝑋ଷ௜ + 𝑢௜     … (10.1) 

In the above equation, suppose     

𝐴ଶ is < 0. This implies that prices are inversely related do demand.  

𝐴ଷ > 0. This indicates that as income increases, demand for the good increases.  

Suppose there is a perfect relationship between 𝑋ଶ and 𝑋ଷ such that 

𝑋ଷ௜ = 300 − 2𝑋ଶ௜         … (10.2) 

In the above case, if we regress X3 on X2 we obtain the coefficient of 
determination 𝑅ଶ = 1. 

If we substitute the value of X3 from equation (10.2), we obtain 

 𝑌௜ = 𝐴ଵ + 𝐴ଶ𝑋ଶ௜ + 𝐴ଷ(300 − 2𝑋ଶ௜) + 𝑢௜ 

 = 𝐴ଵ + 𝐴ଶ𝑋ଶ௜ + 300𝐴ଷ − 2𝐴ଷ𝑋ଶ௜ + 𝑢௜  

 = (𝐴ଵ + 300𝐴ଷ) + (𝐴ଶ − 2𝐴ଷ)𝑋ଶ௜ + 𝑢௜   … (10.3) 

Let 𝐶ଵ = (𝐴ଵ + 300𝐴ଷ)  and  𝐶ଶ = (𝐴ଶ − 2𝐴ଷ) . Then equation (10.3) can be 
written as: 
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𝑌௜ = 𝐶ଵ + 𝐶ଶ𝑋ଶ௜ + 𝑢௜              ….(10.4) 

Thus if we estimate the regression model given at (10.4), we obtain estimators for 
C1 and C2. We do not obtain unique estimators for A1, A2 and A3.  

As a result, in the case of perfect linear relationship or perfect multicollinearity 
among explanatory variables, we cannot obtain unique estimators of all the 
parameters. Since we cannot obtain their unique estimates, we cannot draw any 
statistical inferences (hypothesis testing) about them. Thus, in case of perfect 
multicollinearity, estimation and hypothesis testing of individual regression 
coefficients in a multiple regression are not possible.  

10.2.2 Near or Imperfect Multicollinearity  

In the previous section, the presence of perfect multicollinearity indicated that we 
do not get unique estimators for all the parameters in the model. In practice, we 
do not encounter perfect multicollinearity. We usually encounter near or very 
high multicollinearity. In this case the explanatory variables are approximately 
linearity related.  

High collinearity refers to the case of “near” or “imperfect” multicollinearity. 
Thus, when we refer to the problem of multicollinearity we usually mean 
“imperfect multicollinearity’’ 

Let us consider the same demand function of good Y. In this case we however 
assume that there is imperfect multicollinearity between the explanatory variables 
(in order to distinguish it from the earlier case, we have changed the parameter 
notations). The following is the population regression function: 

 𝑌௜ = 𝐵ଵ + 𝐵ଶ𝑋ଶ௜ + 𝐵ଷ𝑋ଷ௜ + 𝑢௜    ….(10.5) 

Equation (10.5) refers to the case when two or more explanatory variables are not 
exactly linear.  For the above regression model, we may obtain an estimated 
regression equation as follows:  

Equation (10.5): Y෡௜ = 145.37     −       2.7975𝑋ଶ௜       −        0.3191𝑋ଷ௜         

Standard Error:        (120.06)            (0.8122)          (0.4003)  

t-ratio:            (1.2107)            (–3.4444)         (–0.7971) 

97778.0R2          ... (10.6) 

Since the explanatory variables are not exactly related, we can find estimates for 
the parameters. In this case, regression can be estimated unlike the first case of 
prefect multicollinearity. It does not mean that there is no problem with our 
estimators if there is imperfect multicollinearity. We discuss the consequences of 
multicollinearity in the next section.  
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Multicollinearity Check Your Progress 1 

1) What is meant by perfect multicollinearity? 
...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

........................................................................................................................... 

2) What do you understand by imperfect multicollinearity?  

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

........................................................................................................................... 

3) Explain why it is not possible to estimate a multiple regression model in the 
presence of perfect multicollinearity.  
...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

........................................................................................................................... 

10.3  CONSEQUENCES OF MULTICOLLINEARITY 
We know from Unit 4 that the ordinary least squares (OLS) estimators are the 
Best Linear Unbiased Estimators (BLUE). It implies they have the minimum 
variance in the class of all linear unbiased estimators. In the case of imperfect 
multicollinearity, the OLS estimators still remain BLUE. Then what is the 
problem? In the presence of multicollinearity, there is an increase in the variance 
and standard error of the coefficients. As a result, very few estimators are 
statistically significant.  

Some more consequences of multicollinearity are given below. 

(a) The explanatory variables may not be linearly related in the population 
(i.e., in the population regression function), but they could be related in a 
particular sample. Thus multicollinearity is a sample problem. 

(b) Near or high multicollinearity results in large variances and standard 
errors of OLS estimators.  As a result, it becomes difficult to estimate true 
value of the estimator.  
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(c) Multicollinearity results in wider confidence intervals. The standard 
errors associated with the partial slope coefficients are higher. Therefore, 
it results in wider confidence intervals. 

𝑃௥ൣ𝑏ଶ − 𝑡ఈ ଶ⁄ 𝑆𝐸(𝑏ଶ) ≤ 𝛽ଶ ≤ 𝑏ଶ + 𝑡ఈ ଶ⁄ 𝑆𝐸(𝑏ଶ)൧ = 1 − 𝛼             ….(10.7) 

Since the values of standard errors have increased the interval reflected in 
expression in (10.7) has widened.  

(d) Insignificant t ratios: As pointed out above, standard errors of the 
estimators increase due to multicollinearity. The t-ratio is given as 
= ௕మ

ௌா(௕మ)
 .  Therefore, the t-ratio is very small. Thus we tend to accept (or 

do not reject) the null hypothesis and tend to conclude that the variable 
has no effect on the dependent variable.  

(e) A high 𝑅ଶ and few significant t-ratios: In equation (10.6) we notice that 
the 𝑅ଶ  is very high, about 98% or 0.98. The t-ratios of both the 
explanatory variables are  not statistically significant. Only the price 
variable slope coefficient has significant t-value. However, using F-test 
while testing overall significance 𝐻଴: 𝑅ଶ = 0,  we reject the null 
hypotheses.  Thus there is some discrepancy between the results of the F-
test and the t-test.  

(f) The OLS estimators are mainly partial slope coefficients and their 
standard errors become very sensitive to small changes in the data. If 
there is a small change in data, the regression results change substantially.   

(g) Wrong signs of regression coefficients: It is a very prominent impact of 
the presence of multicollinearity. In the case of the example given at 
equation (10.6) we find that the coefficient of the variable income is 
negative. The income variable has a ‘wrong’ sign as economic theory 
suggests that income effect is positive unless the commodity concerned is 
an inferior good. 

10.4 DETECTION OF MULTICOLLINEARITY 
In the previous section we pointed out the consequences of multicollinearity. 
Now let us discuss how multicollinearity can be detected.   

(h) High 2R and Few Significant t-ratios 

This is the classic symptom of multicollinearity. If 𝑅ଶ  is high (greater 
than 0.8), the null hypothesis that the partial slope coefficients are jointly 
or simultaneously equal to zero  0:H 320  is rejected in most cases 
(on the basis of F-test). But the individual t-tests will reflect that none or 
very few partial slope coefficients are statistically different from zero. 
This suggests very few slope coefficients are statistically significant.  
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Multicollinearity (ii) High Pair-wise Correlations among Explanatory Variables  

Due to high correlation among the independent variables, the estimated 
regression coefficients have high standard errors. But this is not 
necessarily true as demonstrated below. Even low correlation among the 
independent variables can lead to the problem of multicollinearity.  

Let 2423 r,r  and 34r  represent the pair-wise correlation coefficients 
between 2X and 3X and 4X respectively. Suppose ,90.0r23  reflecting 
high collinearity between 2X and 3X . Let us consider partial correlation 
coefficient 4.23r that indicates correlation between 2X and 3X (while 
keeping the influence of 4X constant). Suppose we find that 43.0r 4.23  . 
It indicates that partial correlation between 2X and 3X  is low reflecting 

the absence of high collinearity. Therefore, pair-wise correlation 
coefficient when replaced by partial correlation coefficients does not 
indicate the presence of multicollinearity. Suppose the true population 
regression is given by equation (10.8) 

 𝑌௜ = 𝛽ଵ + 𝛽ଶ𝑋ଶ௜ + 𝛽ଶ𝑋ଷ௜ + 𝛽ସ𝑋ସ௜ + 𝑢௜                                  … (10.8) 

Suppose the explanatory variables are perfectly correlated with each other 
as shown in equation (10.9) below 

 𝑋ସ௜ = 𝜆ଶ𝑋ଶ௜ + 𝜆ଷ𝑋ଷ௜                 … (10.9) 

4X is an exact linear combination of 2X and 3X  

If we estimate the coefficient of determination by regressing 4X on 2X
and 𝑋ଷ, we find that  

 𝑅ସ.ଶଷ
ଶ = ௥రమ

మ ା௥రయ
మ ିଶ௥రమௗ௥రయௗ௥మయ

ଵି௥మయ
మ       ... (10.10) 

Suppose, .5.0r,5.0r,5.0r 234342  If we substitute these values in 

equation (10.10), we find that 𝑅ସ.ଶଷ
ଶ = 1. An implication of the above is 

that all the correlation coefficients (among explanatory variables) are not 
very high but still there is perfect multicollinearity.  

(iii) Subsidiary or Auxiliary Regressions  

Suppose one explanatory variable is regressed on each of the remaining 
variables and the corresponding 𝑅ଶ  is computed. Each of these 
regressions is referred to as subsidiary or auxiliary regression. For 
example, in a regression model with seven explanatory variables, we 
regress 𝑋ଵon 𝑋ଶ, 𝑋ଷ, 𝑋ସ, 𝑋ହ, 𝑋଺ and 7X  and find out the 𝑅ଵ

ଶ . Similarly, we 
can regress 𝑋ଶ on 𝑋ଵ, 𝑋ଷ, 𝑋ସ, 𝑋ହ, 𝑋଺  and 7X  and find out the 𝑅ଶ

ଶ . By 

examining the auxiliary regression models we can find out the possibility 
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of multicollinearity.  We take the rule of thumb that multicollinearity may 
be troublesome if 𝑅௜

ଶ obtained from auxiliary regression is greater than 
overall 2R of the regression model.  

A limitation of this method is that we have to compute 𝑅௜
ଶ several times, 

which is cumbersome and time consuming. 

(iv) Variance Inflation Factor (VIF) 

Another indicator of multicollinearity is the variance inflation factor 
(VIF). The 𝑅௜

ଶ obtained from auxiliary regressions may not be a reliable 
indicator of collinearity. In VIF method we modify the formula of 
variance of the estimators as follows; (𝑏ଶ) and )b( 3  

varௗ(𝑏ଶ) = ఙమ

∑௫మ೔
మ ൫ଵିோమ

మ൯
  = ఙమ

∑௑మ೔
మ . ቀ ଵ

ଵିோమ
మቁ  ... (10.11) 

In equation (10.11), you should note that 𝑅ଶ
ଶ is the auxiliary regression 

discussed earlier.   

Compare the variance of 𝑏ଶ given in equation (10.11) with the usual 
formula for variance of an estimator given in Unit 4. We find that  

𝑣𝑎𝑟(𝑏ଶ) = ఙమ

∑௫మ೔
మ ௗ𝑉𝐼𝐹       ... (10.12) 

where VIF = ቀ ଵ
ଵିோమ

మቁ 

Similarly,  𝑣𝑎𝑟(𝑏ଷ) = ఙమ

∑௫య೔
మ (𝑉𝐼𝐹) 

Note that as 𝑅௜
ଶ increases the VIF also increases. This inflates the variance 

and hence standard errors of 2b and 3b  

If 𝑅௜
ଶ  = 0,ௗௗ𝑉𝐼𝐹 = 1 ⇒ 𝑉(𝑏ଶ) = ఙమ

∑௫మ೔
మ  and 𝑉(𝑏ଷ) = ఙమ

∑௫య೔
మ  

Therefore, there is no collinearity.  

On the other hand,   

if 𝑅௜
ଶ  = 1,ௗௗ𝑉𝐼𝐹 = ∞ ⇒ 𝑉(𝑏ଶ) → ∞,ௗ𝑉(𝑏ଷ) → ∞ 

If 𝑅௜
ଶ is high, however 𝑉(𝑏ଶ) tends to ∞. 

Note that 𝑣𝑎𝑟(𝑏ଶ) depends not only on 𝑅௜
ଶ,  but also on 2 and  2

i2x . It 

is possible that 2
iR is high (say, 0.91) but 𝑣𝑎𝑟(𝑏ଶ) could be lower due to 

low 2 or high  2
i2x . Thus  2bV  is still lower resulting in high t value.  

Thus 𝑅௜
ଶ obtained from auxiliary regression is only a superficial indicator 

of multicollinearity.  
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1) Bring out four important consequences of multicollinearity. 

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

........................................................................................................................... 

2) Explain how multicollinearity can be detected using partial correlations. 
...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

........................................................................................................................... 

3) Describe the method of detection of multicollinearity using the variance 
inflation factor (VIF).  
...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

........................................................................................................................... 

10.5 REMEDIAL MEASURES OF 
MULTICOLLINEARITY 

Multicollinearity may not necessarily be an “evil’’ if the goal of the study is to 
forecast the mean value of the dependent variable. If the collinearity between the 
explanatory variables is expected to continue in future, then the population 
regression function can be used to predict the relationship between the dependent 
variable Y and other collinear explanatory variables.  

However, if in some other sample, the degree of collinearity between the two 
variables is not that strong the forecast based on the given Regression is of little 
use.  

On the other hand, if the objective of the study is not only prediction but also 
reliable estimations of the individual parameters of the chosen model then serious 
collinearity may be bad, since multicollinearity results in large standard errors of 
estimators and therefore widens confidence interval.  Thus, resulting in accepting 
null hypotheses in most cases. If the objective of the study is to estimate a group 
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of coefficients (i.e., sum or difference of two coefficients) then this is possible 
even in presence of multicollinearity. In such a case multicollinearity may not be 
a problem. 

𝑌௜ = 𝐶ଵ + 𝐶ଶ𝑋ଶ௜ + 𝑢௜        …(10.13) 

311 A300AC  ,         322 A2AC   

Running the above regression in equation (10.2), as presented in earlier section 
10.2, one can easily estimate 2C by using OLS method, although neither 2A nor 

3A can be estimated individually. There can be situation when in spite of inflated 

S.E., the individual coefficients happened to be numerically significant since the 
true value itself is so large even or estimate on the downside still shows up a 
significant test. 

Certain remedies prescribed for reducing the severity of collinearity problem 
which can be listed as OLS estimators can still retain BLUE property despite of 
near collinearity. Further, one or more regression coefficients can e individually 
statistically significant or some of them with wrong signs.  

10.5.1 Dropping a Variable from the Model 

The simplest solution may be to drop one or more of the collinear variables. 
However, dropping a variable from the model may lead to model specification 
error. In other words, when we estimate the model without the excluded variable, 
the estimated parameters of the reduced model may turn out to be biased. 
Therefore, the best practical advice is not to drop a variable from a model that is 
theoretically sound. A variable which has t value of its coefficient greater than 1, 
then than variable should not be dropped as it will result in a decrease in 𝑅̄ଶ. 

10.5.2 Acquiring Additional Data or New Sample 

Acquiring additional data implies increasing the sample size. This is likely to 
reduce the severity of the multicollinearity problem. As we know from equation 
(10.11), 

varௗ(𝑏ଶ) = ఙమ

∑௫మ೔
మ ൫ଵିோమ

మ൯
    

Given 2 and 𝑅ଶ
ଶ, if the sample size of 𝑋ଶ increases, there is an increase in ∑𝑥ଶ௜

ଶ . 
It will lead a decrease in varௗ(𝑏ଶ) and its standard error. 

10.5.3 Re-Specification of the Model 

It is possible that some important variables are omitted from the model. The 
functional form of the model may also be incorrect. Therefore, there is a need of 
looking into the specification of the model. Many times, taking log form of a 
model leads to solving the problem of multicollinearity.  
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Multicollinearity 10.5.4 Prior Information about Certain Parameters 

Estimated values of certain parameters are available in existing studies. These 
values can be used as prior information. These values give us some tentative idea 
on the plausible value of the parameters.  

10.5.5 Transformation of Variables  

Transformation of the variables would minimize the problem of collinearity.  

10.5.6 Ridge Regression 

The ridge regressions are another method of resolving the problem of 
multicollinearity. In the ridge regression, the first step is to standardize the 
variables both dependent and independent by subtracting the respective means 
and dividing by their standard deviations. This mainly implies that the main 
regression is run by transforming both dependent and explanatory variables into 
the standardized values.  

It is observed that in the presence of multicollinearity, the value of variance 
inflation factor is substantially high. This is mainly due to a high value of 
coefficient of determination. The ridge regression is applied when the regression 
equations are in the form of matrix involving large number of explanatory 
variables.  

The ridge regression proceeds by adding a small value, k, to the diagonal 
elements of the correlation matrix. The reason that the diagonal of ones in the 
correlation matrix could be considered as a ridge, this is the reason such 
regression is referred as ridge regression.  

10.5.7 Other Remedial Measures  

There are several other Remedies suggested such as combining time series and 
cross-sectional data, factor or principal component analysis and ridge regressions. 

Polynomial Regression Models  

Let us consider total cost of production (TC) as a function of output as well as 
marginal cost (MC) and Average Cost (AC) 

 𝑌௜ = 𝛽ଵ + 𝛽ଶ𝑋ଵ + 𝛽ଷ𝑋௜
ଶ + 𝛽ସ𝑋௜

ଷ      …….(10.12) 

The cost function is defined as Cubic function for cost as a third-degree 
polynomial of variable X. This model in equation (10.12) is linear in parameters 

s , therefore satisfy assumption of CLRM of linear Regression Model and can be 
estimated by usual OLS method. However, one needs to worry about problem of 
collinearity since it is not linear in variables and at the same time 2X  and 3X are 
non-linear function of X and do not violate the assumptions of no perfect 
collinearity i.e., no perfect linear relationship between variables. The estimated 
results are presented in equation (10.13).  

2
iii X9615.12X4776.637667.141Ŷ   + 0.9396 3

iX                         ….(10.13) 
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Se (6.3753)  (4.7786)     (0.9857)        (0.0591) 

     9983.0R 2   

2
ii

ii

X)9396.0(X96.124776.63
X
7667.141

X
RCAC   

2
iiii X9396.0X7667.141X9615.124776.63AC   

 2
ii

i

X9396.03X)9615.12(X24776.63
X
TCMC 



  

If the cost curves are U-shaped Average Marginal cost curves then the theory 
suggests that the coefficient should satisfy following  

1) 0and, 421   

2) 03   

3) 42
2
3 3   

Check Your Progress 3 

1)   Define two significant methods to rectify the problem of multicollinearity? 

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

........................................................................................................................... 

2)    Describe the method of ridge regression.  
...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

...........................................................................................................................

........................................................................................................................... 

10.6 LET US SUM UP  
This unit presents a clear understanding of the concept of multicollinearity in the 
regression model. The unit also presents a clear distinction of near and perfect 
multicollinearity. The unit familiarizes the consequences of presence of 
multicollinearity in regression model. The method of detection of 
multicollinearity has been highlighted in the unit. Finally various techniques that 
provide remedial measures including the concept of ridge regression have been 
explained in the unit. 
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Multicollinearity 10.7 ANSWERS/ HINTS TO CHECK YOUR 
PORGRESS EXERCISES  

Check Your Progress 1 

1) The case of perfect multicollinearity mainly reflects the situation when 
the explanatory variables and perfectly correlated with each other 
implying the coefficient of correlation between the explanatory variables 
is 1. 

2) This refers to the case when two or more explanatory variables are not 
exactly linear this reinforces the fact that collinearity can be high but not 
perfect. “High collinearity” refers to the case of “near” or imperfect” or 
high multicollinearity. Presence of multicollinearity implies “imperfect 
multicollinearity’’ 

3) In the case of perfect multicollinearity it is not possible to obtain 
estimators for the parameters of the regression model. See Section 10.2 
for details. 

Check Your Progress 2 

1) (i) In case of imperfect multicollinearity, some of the estimators are 
statistically not significant. But OLS estimates still retain their BLUE 
property that is, Best Linear Unbiased Estimators. Therefore, imperfect 
multicollinearity does not violate any of the assumptions, OLS estimators 
retain BLUE property. Being BLUE with minimum variance does not 
imply that the numerical value of variance will be small.  

(ii) The 2R  value is very high but very few estimators are significant  (t-ratios 
low). The example mentioned in earlier section where the demand 
function of good Y we computed using the earnings of individuals, 
reflects the situation where 2R is quite high about 98% or 0.98 but only 
price variable slope coefficient has significant t-value. However, using F-
test while testing overall significance ,0R:H 2

0   we reject the 
hypotheses that both prices and earnings have no effect on the demand of 
Y. 

(iii) The ordinary least square OLS estimators mainly partial slope coefficients 
and their standard errors become very sensitive to small changes in the 
data, i.e. they then to be rentable. A small charge of data, the regression 
results change quite substantially as in case example of near or imperfect 
multicollinearity mentioned above, the standard errors go down and t-
ratios have increased in absolute values.  

(iv) Wrong signs of regression coefficients. It is a very prominent impact of 
presence of multicollinearity. In case of example where earnings of 
individuals were used in deriving demand curve of good Y, the earning 
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variable has the ‘wrong’ sign for the economic theory since the income 
effect usually positive unless it is case of inferior good. 

2)  Examining partial correlations: In case of three explanatory variables 
32 X,X and 4X very high or perfect multicollinearity between 4X and 

32 X,X . 

Subsidiary or auxiliary regressions: When one explanatory variables X is 
regressed on each of the remaining X variable and the corresponding 2R
is computed. Each of these regressions is referred as subsidiary or 
auxiliary regression. A regression Y on 65432 X,X,X,X,X and 7X with 

six explanatory variables. If 2R comes out to be very high but few 
significant t-ratios or very few X coefficients are individually statistically 
significant then the purpose is to identify the source of the 
multicollinearity or existent of perfect or near perfect linear combination 
of other sX . 

For this we Regress 2X on remaining sX and obtain 2
2R or also written as 

𝑅ଶ.ଷସହ଺଻
ଶ  

Regress 3X on remaining ,Xs and obtain 2
3R coefficient of determination 

also written as 2
24567.3R each 2

iR obtained will lie between 0 and 1. By 

testing the null hypothesis 0R:H 2
i0  by applying F-test. Let 2423 r,r and 

34r  represent pairwise correlation between 2X and 3X , 2X and 4X , 3X
and 4X respectively suppose ,90.0r23  reflecting high collinearity 
between 2X and 3X . Considering partial correlations coefficient 4.23r that 
indicators correlations coefficient between 2X and 3X , Adding the 
influence of 4X constant. If 43.0r 4.23  . Thus, partial correlation between 

2X and 3X  is low reflecting no high collinearity or low degree of 
collinearity. Therefore, pairwise correlation when replaced by partial 
correlation coefficients does not provide indicator of presence of 
multicollinearity.  

3)  Variance Inflation Factor (VIF): 2R obtained variables auxiliary 
regression may not be completely reliable and is not reliable indicator of 
collinearity. In this method we modify the formula of var )b( 2 and )b( 3  

  2
2

2
i2

2
2

R1x
)b(var







 

  














 2

2
2
i2

2

R1
1.

X
 













 2

2R1
1VIF    .F.I.V

x
bV 2

i2

2
2




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Similarly,     VIF

x
bV 2

i3

2
3




  

VIF is variance inflation factor. As 2R increases VIF 2R1
1


increased 

thus inflating the variance and hence standard errors of 2b and 3b  

If  



 2

i2

2
2

2

x
bV1VIF,0R  and  




 2

i3

2
3

x
bV  

     No collinearity  

If      32
2 bV,bVVIF,1R  

If 2R is high, however 𝑣𝑎𝑟(𝑏ଶ) → ∞,ௗ𝑣𝑎𝑟(𝑏ଷ) does not only depend on 
2R (auxiliary coefficient of determination) or VIF. If also depends on 2

and  2
i2x it is possible that 2

iR is high 0.91 but 𝑣𝑎𝑟(𝑏ଶ) could be lower 

due to low 2 or high  2
i2x thus  2bV be still lower resulting in high t 

value not showing any low t end thus defeating the indicator of 
multicollinearity. Thus 2R obtained from and binary regression is only a 
surface indicator of multicollinearity.  

Check Your Progress 3 

1)  (i) Dropping a variable from the Model: The simplest solution might seem 
to be to drop one or more of the collinear variables. However, dropping a 
variable from the model may lead to model specification error in either 
words, where we estimate the model without that variable, the estimated 
parameters of reduced model may turn out to be biased. Therefore, the 
best practical advice is not to drop or variable from an economically 
variable model first because the collinearity problem is serious. A variable 
which has t value of its coefficient greater than 1, then than variable 
should not be dipped as it will result in decrease in adjusted 2R  

(ii) Acquiring Additional Data or new sample: Acquiring additional data 
implies increasing the sample size can reduce the severity of collinearity 
problem. 

 
 




)R1(x
)b(V 2

2
2
i3

2

2  

Given 2 and 2R , if the sample size of 3X increases  2
i3x will 

increase as a result )b(V 3 will tend to decrease and standard error 3b will 
also. 

2) In ridge regression we first standardise all the variables in the model. Go 
through Sub-Section 10.5.6 for details. 

 



 

UNIT 11 HETEROSCDASTICTY  
 

Structure 

11.0  Objectives 

11.1  Heteroscedasticity 

11.2 Heteroscedasticity: Definition 

 11.2.1 Homoscedasticity 

 11.2.2 Heteroscedasticity 

11.3  Consequences of Heteroscedasticity 

11.4  Detection of Heteroscedasticity` 

 11.4.1 Graphical Examination of the Residuals 

11.4.2 Park Test 

11.4.3 Glejser Test 

11.4.4 White’s General Test 

11.4.5 Goldfeld-Quandt Test 

11.5  Remedial Measures of Heteroscedasticity  

 11.5.1 Case I: When 𝜎௜
ଶ is Known 

 11.5.2 Case II: When 2
i  is Unknown  

 11.5.3    Re-Specification of the Model 

11.6  Linear versus Log-Linear Forms  

11.7  Let Us Sum Up 

11.8  Answers/ Hints to Check Your Progress Exercises 

11.0  OBJECTIVES 
After going through this unit, you should be able to 

 explain the concept of heteroscedasticity in a regression model; 

 identify the consequences of heteroscedasticity in the regression model; 

 explain the methods of detection of heteroscedasticity; 

 describe the remedial measures for resolving heteroscedasticity; 

 show how the use of deflators can help in overcoming the consequences of 
heteroscedasticity; and  

 identify the correct functional form of regression model so that 
heteroscedasticity is avoided.  

                                                
 Dr. Pooja Sharma, Assistant Professor, Daulat Ram College, University of Delhi 
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Heteroscedasticity 11.1  INTRODUCTION 
A crucial assumption of the Classical Linear Regression Model (CLRM) is that 
the error term 𝑢௜ in population regression function (PRF) is homoscedastic. It 
means that 𝑢௜ has the same variance 𝜎ଶ throughout the population. An alternative 
scenario arises where the variance of ui is 𝜎௜

ଶ. In other words, the error variance 
varies from one observation to another. Such cases are referred to as cases of 
heteroscedasticity.  

11.2 HETEROSCEDASTICITY: DEFINITION  
Let us first make a distinction between homoscedasticity and heteroscedasticity. 
This will help us in understanding the concept of heteroscedasticity better. 

11.2.1 Homoscedasticity  

Consider a 2-variable regression model, where the dependent variable Y is 
personal savings and the explanatory variable X is personal disposable income (or 
after-tax income).  

As personal disposal income (PDI) increases, the mean or average level of 
savings also increases but the variances of savings around its mean value remains 
the same at all the levels of PDI. Such a case depicts the case of homoscedasticity 
or equal variance as shown in Fig. 11.1. In such cases, we have: 

 

 

 

 

 

 

 

 

 

 

   Fig.11.1: Case of Homoscedasticity 

𝐸(𝑢௜
ଶ) = 𝜎ଶ       … (11.1) 

We can alternatively express equation (11.1) as a case where: 

𝑉(𝑢௜) = 𝜎ଶ       … (11.2) 

In Fig. 11.1, we see a case of homoscedasticity where the variance of the error 
term is a constant value, 𝜎ଶ. This is expressed in the form of an equation as in 
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(11.2). Since the expected value of the error term is zero, the expression 𝑉(𝑢௜) =
𝜎ଶ can also be written as 𝐸(𝑢௜

ଶ) = 𝜎ଶ as in equation (11.1). 

11.2.2 Heteroscedasticity  

As PDI increases, the average level of savings increases. However, the variance 
of savings does not remain the same at all the levels of PDI. This is the case of 
heteroscedasticity or unequal variance. In other words, high-income people, on 
average, save more than low-income people, but at the same time, there is more 
variability in their savings. This can be graphically represented as in Fig. 11.2. 
We now therefore have: 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11.2: Case of Heteroscedasticity 

𝐸(𝑢௜
ଶ) = 𝜎௜

ଶௗௗௗ𝑜𝑟ௗௗ𝑉(𝑢௜) = 𝜎௜
ଶ       … (11.3) 

The case of heteroscedasticity reflected in Fig.11.2 indicates that the error 
variance is not constant. It rather changes with every observation, like  

𝑉(𝑢௜) = 𝜎௜
ଶ. 

It is observed that heteroscedasticity is usually found in cross-sectional data and 
not so much in time series data. The reason for its occurrence more in cross-
sectional data is mainly because, in the case of cross-sectional data, the members 
of population are like individuals, firms, industries, geographical division, state 
or countries. The data in such cases is collected at a point in time. Hence, the 
members of the population may be of different sizes: small, medium or large. 
This is referred to as the scale effect. In other words, due to what is called in 
economics as the ‘scale effect’, in cross sectional data we find cases of 
heteroscedasticity more commonly.  

In the case of time series, on the other hand, the data of similar variables vary 
over a period of time. For instance, GDP (gross domestic product) or savings or 
unemployment varies over a period (like 1960 to 2008). 

 X 0 

Sa
vi

ng
s 

     



 

147 
 

Heteroscedasticity Check Your Progress 1 

1) What is meant by heteroscedasticity? 

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

....................................................................................................................... 

2) Is the problem of heteroscedasticity related to data? Comment. 
.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

....................................................................................................................... 

11.3 CONSEQUENCES OF HETEROSCEDASTICITY 
To avoid the problem of heteroscedasticity, we have made one of the 
assumptions in the classical linear regression model that the error term is 
homoscedastic. However, in many regression models and actual data, the 
disturbance variance varies across observations. Consequently, the model suffers 
from specific impacts due to heteroscedastic error term. 

The following are the characteristics of the OLS model in the presence of 
heteroscedasticity.  

(i) The OLS estimators are linear function of the variables. The 
regression equation is also linear in its parameters. 

(ii) The ordinary least squares (OLS) estimators are unbiased. This means 
the expected value of estimated parameters is equal to the true 
population parameters.  

(iii) The OLS estimators though unbiased, are no longer with minimum 
variance, i.e., they are no longer efficient. In fact, even in large 
samples, the OLS estimators are not efficient. Therefore, the OLS 
estimators are not BLUE both in small as well as asymptotically large 
samples. 

(iv) In light of the above, the usual formula for estimating variances of 
OLS estimator is biased, i.e., they are either upward biased (positive 
bias) or downward biased (negative bias). Note that when the OLS 
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of Assumptions overestimates the true variances of estimators, a positive bias is said 

to occur, and when it underestimates the true variances of estimators, 
we say that a negative bias occurs.  

(v) The estimator of true population variance as given by 𝜎ොଶ = ∑௘೔
మ

ௗ௙
= ோௌௌ

ௗ௙
 

is biased. That is  

𝐸(𝜎ොଶ) ≠ 𝜎ଶ     … (11.4) 

We know that the degrees of freedom for testing an estimated 
parameter is (n – k), where k is the number of parameters (or 
explanatory variables) in the regression model. For example, if there 
are three explanatory variables, d.f. = (n – 3). In the two variables 
case, df = (n – 2). Note that we are counting the intercept estimate for 
this purpose of determining the d.f. 

(vi) Equation (11.4) implies that in the presence of heteroscedasticity, the 
estimated value of error variance is not equal to the true population 
error variance. In view of this, the usual confidence interval and 
hypothesis testing based on t and F distributions are unreliable (since, 
the estimator of the error variance is biased). Therefore, the possibility 
of making wrong inferences (Type–II error) is very high. As a result, 
in the presence of heteroscedasticity, the results of the usual 
hypothesis-testing are not reliable raising the possibility of drawing 
misleading conclusions.  

Check Your Progress 2 

1) State any two important consequences of heteroscedasticity. 

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

....................................................................................................................... 

2)  In the presence of heteroscedasticity, the OLS estimator will either 
overestimate or underestimate the error variance. Justify the statement. 
.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

....................................................................................................................... 
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Heteroscedasticity 11.4 DETECTION OF HETEROSCEDASTICITY  
So far, we have discussed the consequences of heteroscedasticity. Now let us 
discuss how heteroscedasticity can be detected. There are quite a few methods of 
detecting heteroscedasticity. Some of these methods are described below.  

11.4.1 Graphical Examination of the Residuals  

We can begin with examining the residuals obtained from the fitted regression 
line. The residual plot of squared residuals is an indicator of the existence of 
heteroscedasticity. Since the error terms 𝑢௜ are not observable, we examine the 
residuals,  𝑒௜. 

A plot of the residuals can give us various types of diagrams as in Fig. 11.3. 

 
Fig. 11.3: Cases of Homoscedasticity and Heteroscedasticity 

In the five situations depicted in Fig. 11.3, we see that Case (a) represents 
homoscedasticity, i.e., 𝑉(𝑢௜) = 𝜎ଶ whereas in the remaining four cases viz., (b), 
(c), (d) and (e) represent heteroscedasticity, i.e., 𝑉(𝑢௜) = 𝜎௜

ଶ. 

11.4.2 Park-Test  

If there is heteroscedasticity in a data set, the heteroscedastic variance 𝜎௜
ଶmay be 

systematically related to one or more explanatory variables. Therefore, we can 
regress 𝜎௜

ଶon one or more explanatory variables such as   

𝜎௜
ଶ = 𝑓(𝑋௜)  

ln𝜎௜
ଶ = 𝛽ଵ + 𝛽ଶln𝑋௜ + 𝑣௜      … (11.5) 

In equation (11.5), a non-linear (double-log) regression is run to establish a 
relationship between the error variance and the explanatory variable with 𝑣௜ 
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taken as the residual term. When 𝜎௜
ଶare not known, we take the residual term 𝑒௜ 

as proxies for 𝑢௜. Therefore, we have 

lnௗ𝑒௜
ଶ = 𝛽ଵ + 𝛽ଶln𝑋௜ + 𝑣௜       … (11.6) 

Now, Park test for detecting heteroscedasticity involves the following steps:  

a) Run the original regression in equation (11.5) despite the 
heteroscedasticity problem. 

b) From the regression obtain ei and square them. Then take the logs of 2
ie . 

c) Run the double-log form regression as indicated in equation (11.6) using 
an explanatory variable in the original model (in the case of more than 
one explanatory variable). Then run the regression against each X 
variable. In other words, we run the regression against 𝑌෠௜, the estimated 
value of 𝑌௜. 

d) Test the null hypothesis 02  , i.e., there is no heteroscedasticity.  

e) A statistically significant relationship implies that the null hypothesis of 
no heteroscedasticity is rejected. It suggests the presence of 
heteroscedasticity which requires remedial measures.  

f) If the null hypothesis is not rejected, then it means we accept 02  and 
the value of 1 , that is, the value of the intercept can be accepted as the 
common, homoscedastic variance 𝜎ଶ. 

11.4.3 Glejser Test 

The Glejser Test is similar to the Park Test. The steps to carry out the Glejser test 
are as follows:  

a) Obtain the residual ei from the original model. 

b) Take absolute value |𝑒௜| of the residuals  

c) Regress the absolute values of |𝑒௜| on the X variable that is expected to be 
closely associated with heteroscedastic variance 𝜎௜

ଶ.  

d) You can take various functional forms of 𝑋௜. Some of the functional 
forms suggested by Glejser are  

 |𝑒௜| = 𝛽ଵ + 𝛽ଶ𝑋௜ + 𝑣௜      … (11.7) 

|𝑒௜| = 𝛽ଵ + 𝛽ଶඥ𝑋௜ + 𝑣௜      … (11.8) 

|𝑒௜| = 𝛽ଵ + 𝛽ଶ ቀ ଵ
௑೔

ቁ + 𝑣௜      … (11.9) 

The above means that the Glejser test suggests various plausible (linear as 
well as non-linear) relationships between the residual term and the 
explanatory variable to investigate the presence of heteroscedasticity. 
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Heteroscedasticity e) For each of the cases given, test the null hypothesis that there is no 
heteroscedasticity, i.e., 𝐻଴: 𝛽ଶ = 0 (no heteroscedasticity).  

f) If H0 is rejected we conclude that there is evidence of heteroscedasticity. 

You should note that the error term 𝑣௜  can itself be heteroscedastic as well as 
serially correlated. Thus, in the case of Glesjer test also, we follow the same steps 
as in the Park Test. The difference between the two tests is in the functional 
forms to be considered. 

11.4.4 White’s General Test 

Let us consider the following PRF:  

𝑌௜ = 𝛽ଵ + 𝛽ଶ𝑋ଶ௜ + 𝛽ଷ𝑋ଷ௜ + 𝑢௜      … (11.10) 

The steps to carry out White’s general test for heteroscedasticity are as follows:  

a) Estimate the population regression equation (11.10) by OLS and obtain 
the residuals 𝑒௜. 

b) Find the square of the residuals 𝑒௜
ଶ. 

c) Run the following auxiliary regression:  

𝑒௜
ଶ = 𝐴ଵ + 𝐴ଶ𝑋ଶ௜ + 𝐴ଷ𝑋ଷ௜ + 𝐴ସ𝑋ଶ௜

ଶ + 𝐴ହ𝑋ଷ௜
ଶ + 𝐴଺𝑋ଶ௜𝑋ଷ௜ + 𝑣௜ … (11.11)  

d) Obtain the coefficient of determination  R2 from the auxiliary regression 
under the null hypothesis that there is no heteroscedasticity (i.e., all the 
slope coefficient are zero). That is,  

𝐻଴: 𝐴ଶ = 𝐴ଷ. . . 𝐴଺ = 0      … (11.12) 

The null hypothesis given at equation (11.12) implies that all the partial 
slope coefficients are simultaneously zero. Note that we do not include 
the intercept term 𝐴ଵ in equation (11.12).  

e) Test the null hypothesis in equation (11.12) by using the chi-square 
distribution as follows: 

 𝑛𝑅ଶ~𝜒௞ିଵ
ଶ         … (11.13) 

Equation (11.13) tells us that the product of sample size (n) and the 
coefficient of determination (R2) follows 2 distribution with degrees of 
freedom (k–1). Here k is the number of regressors in the auxiliary 
regression (equation 11.11).  

f) If 𝜒௖௔௟௖௨௟௔௧௘ௗ 
ଶ > 𝜒௖௥௜௧௜௖௔௟

ଶ  we reject the  𝐻଴, and conclude that the null 
hypothesis of homoscedasticity is to be rejected, i.e., there is 
heteroscedasticity. Alternatively, we can also decide on the basis of the p 
value (readily given by econometric softwares). If the p value is < 0.05, 
we reject H0. If 𝜒௖௔௟௖௨௟௔௧௘ௗ 

ଶ < 𝜒௖௥௜௧௜௖௔௟
ଶ  . On the other hand, if p > 0.05 we 

do not reject the null hypothesis of no heteroscedasticity. This implies the 
existence of homoscedasticity. 
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Treatment of Violations 
of Assumptions 11.4.5 Goldfeld-Quandt Test  

The Goldfeld-Quandt (G-Q) test is applicable if heteroscedasticity is related to 
only one of the explanatory variables. Let us assume that the error variance 𝜎௜

ଶ is 
related to one of the explanatory variables (say, 𝑋௜) in the regression model. 

Suppose 𝜎௜
ଶ is positively related to 𝑋௜ as given below.  

𝜎௜
ଶ = 𝜎ଶ𝑋௜

ଶ        … (11.14) 

In order to carry out the G-Q test we proceed as follows:  

a) Arrange the observations in increasing order of 𝑋௜ 

b) Omit some of the observations (say, C out of the no observations in the 
sample) in the middle of the series. There is no hard and fast rule for the 
exact value of C and the choice is quite arbitrary. In practice about one 
fourth observations are omitted. 

c) Run a regression on the first 𝑛ଵ = (𝑛 − 𝐶)/2 observations. Find out the 
error sum of squares for this regression, i.e., ESS1. 

d) Run a regression on the last 𝑛ଶ = (𝑛 − 𝐶)/2 observations. Find out the 
error sum of squares for this regression, i.e., ESS2. 

e) Take the following null hypothesis:  

 𝐻଴: 𝜎௜
ଶ = 𝜎ଶ       ... (11.15) 

f) Find out the ratio: 

ʎ =  
ோௌௌభ

೙భష಴షమೖ
మൗ

ோௌௌమ
೙మష಴షమೖ

మൗ
          

In case 𝑛ଵ = 𝑛ଶ, the above ratio becomes 

ʎ = ோௌௌభ
ோௌௌమ

        … (11.6) 

The above ratio (ʎ ) follows F-distribution with degrees of freedom  

(  ௡భି஼ିଶ௞
ଶ

,    ௡మି஼ିଶ௞
ଶ

  )     … (11.17) 

g) We compare the value of ʎ obtained above with the tabulated value of F 
given at the end of the book. If 𝜆 > Fcritical we reject 𝐻଴: 𝜎௜

ଶ = 𝜎ଶand 
conclude that there is heteroscedasticity in error variance. It implies  
𝜎௜

ଶ ≠ 𝜎ଶ. If 𝜆 < Fcritical we do not reject H0. We conclude that there is 
homoscedasticity in error variance, i.e.,  𝜎௜

ଶ = 𝜎ଶ. 
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Heteroscedasticity Check Your Progress 3 

1) State the steps in conducting the Park test for detection of heteroscedasticity. 

.........................................................................................................................

.........................................................................................................................

.........................................................................................................................

.........................................................................................................................

......................................................................................................................... 

11.5 REMEDIAL MEASURES OF 
HETEROSCEDASTICITY  

Heteroscedasticity means that the OLS estimators are unbiased but no longer 
efficient; not even in large samples. Therefore, if heteroscedasticity is present, it 
is important to seek remedial measures. For proceeding with remedial measures, 
it is important to know if the true error variance 2

i  is known or not. In such 
cases, use of a ‘deflator’ may help rectify the problem of heteroscedasticity. We 
will learn about the use of deflators in this section.  

11.5.1 Case I: 𝜎௜
ଶ is Known 

If we know 𝜎௜
ଶ, we can use the method of Weighted Least Squares (WLS). We 

explain the procedure of carrying out WLS below.  

Let us consider the two-variable Population Regression Function (PRF).  

 𝑌௜ = 𝛽ଵ + 𝛽ଶ𝑋௜ + 𝑢௜       …(11.18) 

Let us assume that 𝑢௜ has heteroscedastic error variance. Here, since the true 
variance is known, we can use it to divide the equation (11.18) by 𝜎௜. By dividing 
both sides of (11.18) by 𝜎௜, we obtain: 

 ௒೔
ఙ೔

= 𝛽ଵ ቀ ଵ
ఙ೔

ቁ + 𝛽ଶ ቀ௑೔
ఙ೔

ቁ + ௨೔
ఙ೔

     … (11.19) 

Note that the error term gets transformed due to the division by 𝜎௜. Let the new 
error term be vi. Squaring the new error term we get:  

 𝑣௜
ଶ = ௨೔

మ

ఙ೔
మ        …(11.20) 

Since the variance of error term is given by 𝑣𝑎𝑟(𝑣௜) = 𝐸(𝑣௜
ଶ), taking the 

expectation of both sides of the equation (11.20) we get: 

 𝐸(𝑣௜
ଶ) = 𝐸 ൬௨೔

మ

ఙ೔
మ൰ 

  = ൬ ଵ
ఙ೔

మ൰ . 𝐸(𝑢௜
ଶ) 

  = ఙ೔
మ

ఙ೔
మ = 1      
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Treatment of Violations 
of Assumptions 

Thus, the transformed error-term 𝑣௜ is homoscedastic. Therefore, equation 
(11.19) can be estimated by the usual OLS method. The OLS estimators of 
𝛽ଵ and 𝛽ଶ thus obtained are called the Weighted Least Squares (WLS) 
estimators.  

11.5.2 Case II: 2
i  is Unknown  

When the error variance 2
i is not known, we need to make further assumptions 

to use the WLS method. Here, we consider the following two cases. 

 

(i) Error variance 𝝈𝒊
𝟐 is Proportional to 𝑋௜ 

In this case, we follow what is called as the square root transformation. 
The proportionality assumption means that:  

 𝐸(𝑢௜
ଶ) = 𝜎ଶ𝑋௜  

 Or, 𝑉(𝑢௜) = 𝜎ଶ𝑋௜      … (11.21) 

Now, the square root transformation requires that we divide both sides of 
equation (11.18) by ଵ

ඥ௑೔
 to get: 

 ௒೔

ඥ௑೔
= 𝛽ଵ

ଵ
ඥ௑೔

+ 𝛽ଶ
௑೔

ඥ௑೔
+ ௨೔

ඥ௑೔
  

 = 𝛽ଵ
ଵ

ඥ௑೔
+ 𝛽ଶඥ𝑋௜ + 𝑣௜     … (11.22) 

  

 where 𝑣௜ = ௨೔

ඥ௑೔
        … (11.23) 

The error term in equation (11.23) is a transformed error term. In order to 
see whether 𝑣௜ is devoid of heteroscedasticity, we square both the sides of 
equation (11.23) to get: 

 𝑣௜
ଶ = ௨೔

మ

௑೔
       … (11.24) 

 Now, the variance of the transformed error term, i.e., equation (11.24) is: 

𝐸(𝑣௜
ଶ) = ா(௨೔

మ)
௑೔

= ఙమ௑೔
௑೔

       ... (11.25) 

 = 𝜎ଶ ⇒ homoscedasticity  

Thus, when we apply the square root transformation (𝑣௜ = ௨೔

ඥ௑೔
), we could 

make the error variance to become homoscedastic.  

(ii) Error Variance is Proportional to 𝑋௜
ଶ 

Here, we have: 

𝐸(𝑢௜
ଶ) = 𝜎𝑋௜

ଶ        … (11.27) 
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Heteroscedasticity 𝑉(𝑢௜) = 𝜎𝑋௜
ଶ  

Dividing both sides of equation (11.18) by 𝑋௜, 

௒೔
௑೔

= 𝛽ଵ ቀ ଵ
௑೔

ቁ + 𝛽ଶ + ቀ௨೔
௑೔

ቁ  

 = 𝛽ଵ ቀ ଵ
௑೔

ቁ + 𝛽ଶ + 𝑣௜       … (11.28) 

Equation (11.28) is the transformed PRF in which the error term is: 

𝑣௜ = ௨೔
௑೔

,        … (11.29) 

Squaring both the sides of equation (11.29), we get:  

𝑣௜
ଶ = ௨೔

మ

௑೔
మ        … (11.30) 

The variance of the error term of the transformed equation in (11.30) is 
homoscedastic because: 

𝐸(𝑣௜
ଶ) = ா൫௨೔

మ൯
௑೔

మ = ఙ௑೔
మ

௑೔
మ = 𝜎      … (11.31) 

11.5.3 Re-Specification of the Model 

Instead of speculating about 𝜎௜
ଶ, sometimes choosing a different functional form 

can reduce heteroscedasticity. For instance, instead of running the usual 
regression model, we can estimate the model in its log form.  

lnௗ𝑌௜ = 𝛽ଵ + 𝛽ଶln𝑋௜ + 𝑢௜       … (11.32) 

In many cases transforming original model as above will take care of the problem 
of heteroscedasticity. 

We used the word ‘deflator’ in the beginning of this section. The cases we have 
considered above basically involve dividing both sides of the original regression 
model by a known value to transform the variables. Such transformation of 
variables by division amounts to deflating the original values. The known values 
used to perform the division act are known as the ‘deflators’.  

Check Your Progress 4 

1)  How does the use of deflators work as a solution for the problem of 
heteroscedasticity? 

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

....................................................................................................................... 
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Treatment of Violations 
of Assumptions 

2)  Explain how the usage of deflators serve to tackle the problem of 
heteroscedasticity when the error variance is proportional to 𝑋௜

ଶ. 

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

....................................................................................................................... 

11.6  LINEAR VERSUS LOG – LINEAR FORMS 

The regression model can be run in various functional forms depending upon: (i) 
the relationship of dependent and independent variable, and (ii) the data. Suppose 
there is a choice of running two types of regression models: (i) a linear regression 
model, and (ii) a log-linear model.  To help decide in such cases, a test for the 
selection of the appropriate functional form for regression is proposed by 
Mackinnon, White and Davidson (MWD). The MWD test is applied as follows:  

Let there be two distinct functional forms of a regression like: 

Model 1:  𝑌௜ = 𝛽ଵ + 𝛽ଶ𝑋௜ + 𝑢௜     …….(11.33) 

Model 2:  ln𝑌௜ = 𝛽ଵ + 𝛽ଶ𝑙𝑛𝑋௜ + 𝑢௜    …….(11.34) 

In Model 1, the dependent variable is linearly related to one (or more than one) of 
the Xs. In Model 2, the relationship between the dependent and independent 
variable is non-linear. The MWD test involves considering a null and an alternate 
hypothesis as follows: 

H0: Linear Model, i.e., Y is a linear function of regressors (equation (11.33)) 

H1: Log- Linear Model, i.e., ln Y is a linear function of 𝑙𝑛𝑋௜ (equation (11.34)) 

Following are the steps for carrying out the MWD test: 

(i) Estimate the linear model and obtain the estimated Y values. Let the 
estimated Y values be denoted as Yf . 

(ii) Estimate the log-linear model and obtain the estimated lnY values. 
Let the estimated values of the log-linear Y be denoted as lnYf. 

(iii) Obtain Z1 = (lnYf – Yf ) 

(iv) Regress Y on Xs and Z1 obtained in Step (iii) Reject H0 if the 
coefficient of Z1 is statistically significant by the usual t-test. 

(v) Obtain Z2 = (antilog lnYf – Yf ) 



 

157 
 

Heteroscedasticity (vi) Regress log of Y on the logs of Xs and Z2. Reject H1 if the 
coefficient of Z2 is statistically significant by the usual t-test.  

Suppose the linear model I in equation (11.33) is in fact the correct model. In that 
case, the constructed variable Z1 should not be statistically significant in Step 
(iv). For, in that case the estimated Y values from the linear model and those 
estimated from the log-linear model (after taking their antilog values for 
comparative purposes) in equation (11.34) should not be different. The same 
logic applies to the alternative hypothesis H1. 

Check Your Progress 5 

1) Outline the MWD test for choosing the appropriate functional form of the 
regression model between its linear and log-linear forms. 
.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

....................................................................................................................... 

11.7 LET US SUM UP  
In this Unit, we have discussed the concept of heteroscedasticity in regression 
models. The unit outlines the consequences of the presence of heteroscedasticity 
and the methods of its detection. Various techniques to provide remedial 
measures are explained in the unit. The remedial measures involve understanding 
of the use of deflators. The unit has also explained a method for the choice of 
selecting the functional form by way of the MWD test. 

11.8 ANSWERS/ HINTS TO CHECK YOUR  
  PROGRESS EXERCISES  
Check Your Progress 1 
1)  A crucial assumption of the Classical Linear Regression Model CLRM is 

that the error term ui is population regression function (PRF) is 
homoscedastic, i.e., they have the same variance 2 . However, if the 
variance of 𝑢௜ is 𝜎௜

ଶ (in other words, it varies from one observation to 
another), then the situation is referred to as heteroscedasticity.  

2)   Heteroscedasticity is usually found is cross-sectional data and not in time 
series data.  This is because, in the case of cross-sectional data, the 
members of population are in the form of individual firms, industries, 
geographical division, state or countries. The data collected for such units 
at a point of time from the members of population may be of different 
sizes: small, medium or large firms. This is referred to as scale effect.  
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of Assumptions 

Due to the scale effect, in cross-sectional data, there is a greater chance of 
coming across heteroscedasticity in the error terms. 

Check Your Progress 2 
1)  The OLS estimators are unbiased but they no longer have minimum 

variance, i.e., they are no longer efficient. Even in large samples the OLS 
estimators are not efficient. Therefore, the OLS estimators are not BLUE 
in small as well as large samples (asymptotically). 
The usual formula for estimating the variances of OLS estimator are 
biased i.e. there is either upward bias (positive bias) or downward bias 
(negative bias).  

2)  The OLS estimator of error variance is a biased estimator. Thus it will 
either overestimate or underestimate. In fact, the OLS estimator of error 
variance is inefficient, thereby meaning that it is very high; thus it is 
always an overestimate.  

Check Your Progress 3 
1)  In the presence of heteroscedasticity, the heteroscedastic variance 2

i may 
be systematically related to one or more explanatory variables. Therefore, 
we can regress 2

i on one or more of X- variables as:  

 𝜎௜
ଶ = 𝑓(𝑋௜) or ln𝜎௜

ଶ = 𝛽ଵ + 𝛽ଶln𝑋௜ + 𝑣௜ 
where 𝑣௜ = 𝑛𝑒𝑤 residual term. If 𝜎௜

ଶare not known, estimated ie can be 
used as proxies for 𝑢௜. A statistically significant relationship implies that 
the null hypothesis of no heteroscedasticity is rejected suggesting the 
presence of heteroscedasticity which requires remedial measures. If null 
hypothesis is not rejected then it means we accept 02  and value of 1
can be taken as the common, homoscedastic variance .2  

2)  Heteroscedasticity means that the OLS estimators are unbiased but 
estimators are no longer efficient, not even in large samples. This lack of 
efficiency makes the conventional hypothesis testing of OLS estimators 
unreliable. For remedial measures, it is important to know whether the 
true error variance 2

i  is known or not. In such cases, use of deflators will 
help rectify the problem of heteroscedasticity. Various deflators can be 
used to convert the error variance ti make them homoscedastic.  
When 2

i is known, the method of Weighted Least Squares (WLS) can be 
considered. In this, the error variance 2

i is used to divide both sides of the 
equation by i . See Section 11.5 for details.   

3)  The estimated residuals show a pattern similar to earlier case I, but error 
variance is not linearly related to X but increases proportional to square of 
X. Hence, 𝐸(𝑢௜

ଶ) = 𝜎𝑋௜
ଶ and 𝑉(𝑢௜) = 𝜎𝑋௜

ଶ. Dividing both sides by 𝑋௜, we 
get:  
௒೔
௑೔

= 𝛽ଵ ቀ ଵ
௑೔

ቁ + 𝛽ଶ + ቀ௨೔
௑೔

ቁ  

 = 𝛽ଵ ቀ ଵ
௑೔

ቁ + 𝛽ଶ + 𝑣௜ 
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Heteroscedasticity 𝑣௜ = ௨೔
௑೔

, 𝑣௜
ଶ = ௨೔

మ

௑೔
మ  

𝐸(𝑣௜
ଶ) = ா൫௨೔

మ൯
௑೔

మ = ఙ௑೔
మ

௑೔
మ = 𝜎  

Thus, the transformed equation is homoscedastic. 
Check Your Progress 5 
1)  The test for selection of the appropriate functional form for regression as 

proposed by Mackinnon, White and Davidson is known as MWD Test. The 
MWD test is used to choose between the two models. See Section 11.6 for 
details.   



UNIT 12 AUTOCORRELATION  
Structure  

12.0  Objectives 

12.2  Concept of Autocorrelation 

12.3 Reasons for Autocorrelation 

12.4  Consequences of Autocorrelation 

12.5  Detection of Autocorrelation 
 12.5.1 Graphical Method 

 12.5.2 Durbin-Watson Test 

 12.5.3 The Breusch-Godfrey (BG) Test  

12.6  Remedial Measures for Autocorrelation 
 12.6.1 Known Autoregressive Scheme: Cochrane-Orcutt Transformation  

 12.6.2 Unknown Autoregressive Scheme 

 12.6.3 Iterative Procedure 

12.7  Autocorrelation in Models with Lags 

12.8  Let Us Sum Up 

12.9  Answers/ Hints to Check Your Progress Exercises 

12.0  OBJECTIVES 
After going through this unit, you should be able to: 

 outline the concept of autocorrelation in a regression model; 

 describe the consequences of presence of autocorrelation in the regression 
model; 

 explain the methods of detection of autocorrelation; 

 discuss the procedure of carrying out the Durbin-Watson test for detection of 
autocorrelation; 

 elucidate the remedial measures for resolving autocorrelation; and 

 outline the procedure of dealing with situations where autocorrelation exists 
in models with a lagged dependent variable.  

12.1  INTRODUCTION  
In the previous unit, you studied about heteroscedasticity. You saw that 
heteroscedasticity is a violation of one of the assumptions of the Classical Linear 
Regression Model (CLRM), viz., homoscedasticity. If the variance of the error 
term is not constant across all observations, then we have the problem of 
heteroscedasticity. In this unit, we discuss about the violation of another 
assumption of the CLRM. Recall that one of the assumptions about the error 
                                                
 Dr. Pooja Sharma, Assistant Professor, Daulat Ram College, University of Delhi 
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Autocorrelation terms is that the error term of one observation is not correlated with the error 
term of another observation. If they are correlated, then the situation is said to be 
one of autocorrelation. This is also called as the problem of serial correlation. 
This can be present in both cross-section as well as time series data. Let us 
discuss the concept of autocorrelation in a little more detail. 

12.2  CONCEPT OF AUTOCORRELATION 
The classical linear regression model (CLRM) assumes that the correlation 
among various error terms is zero. We know that heteroscedasticity is associated 
more with cross sectional data.  Autocorrelation is usually more associated with 
time series data. Of course, autocorrelation can be present even in cross-section 
data. Some authors use the term autocorrelation only for time-series data. They 
use the term ‘serial correlation’ for describing autocorrelation in cross-section 
data. Many authors use the terms autocorrelation and serial correlation as 
synonyms. They use the term across both cross-section as well as time-series 
data. 

Autocorrelation occurring in cross-sectional data is also sometimes called spatial 
correlation (correlation in space rather than in time). In CLRM we assume that 
there is no autocorrelation. This implies: 

𝐸൫𝑢௜, 𝑢௝൯ = 0  𝑖 ≠ 𝑗      …(12.1) 

Equation (12.1) means that the stochastic error term associated with one 
observation is not related to or influenced by the disturbance term associated with 
any other observation. For instance, the labour strike in one quarter affecting 
output may not affect the output in the next quarter. This implies there is no 
autocorrelation in the time series. Similarly, in a cross-section data of family 
consumption expenditure, the increase in one family’s income on consumption 
expenditure in not expected to affect the consumption expenditure of another 
family. In the example of output affected due to labour strike above, if 
𝐸൫𝑢௜, 𝑢௝൯ ≠ 0, 𝑖 ≠ 𝑗, this implies a situation of autocorrelation. This means the 
disruption caused by the strike in one quarter is affecting the output in the next 
quarter. Similarly, increase in consumption expenditure of one family may 
influence the consumption expenditure of other families in the neighbourhood 
due to the ‘demonstration effect’ (cross-sectional data). It is thus more a case of 
spatial correlation. It is therefore important to analyse the data carefully to bring 
out what exactly is causing the correlation among the disturbance terms.  Let us 
see more carefully the different situations or cases of autocorrelation as depicted 
in Fig.12.1.  In panels (a) to (d) of Fig. 12.1 we find distinct pattern among 𝑢௧ . In 
panel (e) of Fig. 12.1 we do not see any such pattern. Note that since 
autocorrelation is seen mostly in time series data, we use the subscript ‘t’ in place 
of ‘i’ to indicate individual observations. Let us now study the reasons of 
autocorrelation with some specific examples from economics.  
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Fig. 12.1: Cases of Autocorrelation 

 

12.3 REASONS FOR AUTOCORRELATION 
The various reasons for the presence of autocorrelation can be discussed under 
the following broad heads.  

(a) Inertia or Sluggishness 

Most of the economic time series data displays inertia or sluggishness. For 
instance, gross domestic product (GDP), production, employment, money supply, 
etc. reflect recurring and self-sustaining fluctuations in economic activity. When 
an economy is recovering from recession, most of the time series will be moving 
upwards. This means any subsequent value of a series at one point of time is 
always greater than its previous time value.  
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Autocorrelation Such a momentum continuous till it slows down due to, say, a factor like increase 
in taxes or interest or both. Hence, in regressions involving time series data, 
successive observations would generally be inter-dependent or correlated. Such 
an uptick effect is termed as ‘inertia’ which literally means a situation that 
continues to hold in a similar manner for many successive time periods.  We see 
its opposite effect in periods of recession when most of the economic activity will 
be suffering, i.e., will be sluggish. 

(b) Specification Error in the Model 

By an incorrect specification of model, certain important variables that should be 
included in the model may not be included (i.e. a case of under-specification). If 
such model-misspecification occurs, the residuals from such an incorrect model 
will exhibit systematic pattern. If the residuals show a distinct pattern, it gives 
rise to serial correlation.  

(c) The Cobweb Phenomenon 

Many agricultural commodities reflect what is called as a ‘cobweb phenomenon’. 
In this, supply reacts to price with a lag of time. This is mainly because supply 
decisions take time to implement. In other words, there is a gestation period 
involved. For instance, farmers’ decision to plant crop might depend on the 
prices prevailing in the previous year’s supply position or function. This can be 
written as: 

 𝑆௧ = 𝛽ଵ + 𝛽ଶ𝑃௧ିଵ + 𝑢௧     … (12.2) 

In (12.2), the error term 𝑢௧ may not be purely random. This is because, if the 
farmers over-produce in year t, they are likely to under-produce in year (t + 1) 
since they want to clear away the unsold stock. This usually leads to a cobweb 
pattern. 

(d) Data Smoothing 

Sometimes we need to average the data presented. Considering averages implies 
‘data smoothing’(see Unit 5 of BECC 109 for an example).  We may prefer to 
convert monthly data into quarterly data by averaging the data over every three 
months. However, this smoothness, desired in many contexts, may itself lead to a 
systematic pattern in disturbances, resulting in autocorrelation.  

Autocorrelation may be positive or negative depending on the data. Generally, 
economic data exhibits positive autocorrelation. This is because most of them 
either move upwards or downwards over time. Such a trend continues at least for 
some time i.e. some months, or quarters. This means, they are not generally 
expected to exhibit a sudden upward or downward movement unless there is a 
reason or a shock.  



 

 

 

164 

Treatment of Violations of 
Assumptions 12.4 CONSEQUENCES OF AUTOCORRELATION 

When the assumption of no-autocorrelation is violated, the estimators of the 
regression model based on sample data suffers from certain consequences. More 
specifically, the OLS estimators will suffer from the following consequences.  

a) The least squares estimators are still linear and unbiased. In other words, 
the estimated values of parameters continue to be unbiased. However, 
they are not efficient because they do not have minimum variance. 
Therefore, the usual OLS estimators are not BLUE (best linear unbiased 
estimators). 

b) The estimated variances of OLS estimators (𝑏ଵ and 𝑏ଶ) are biased. 
Hence, the usual formula used to estimate the variances, and their 
standard errors underestimate the true variances and standard errors. 
Consequently, the decision of rejecting a parameter on the basis of t-
values, concluding that a particular coefficient is statistically different 
from zero, would be an incorrect conclusion. In other words, the usual t 
and F tests become unreliable. 

 
Fig. 12.2: Patterns of the Error Term in Autocorrelation 

a) As a direct consequence of the above, the usual formula for estimating the 
population error variance, viz.,  df/RSSˆ 2   yields a biased estimator 
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Autocorrelation of true 2 . In particular, it underestimates the true 2 . As a consequence, 
the computed 𝑅ଶ becomes an unreliable measure of true 𝑅ଶ. 

Fig. 12.2 shows the pattern of error terms under different situations of 
autocorrelation. Note that since the population error terms (𝑢௧) are not known, we 
are plotting the sample residuals (𝑒௧).  

Check Your Progress 1 [Answer the questions in 50-100 words within the space 
given] 

1) What is meant by autocorrelation in a regression model? 
……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………. 

2) In which type of data the problem of autocorrelation is more common? 
Why? 
……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………. 

3) State the broad reasons for autocorrelation. 
……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………. 

4) Enumerate the consequences of autocorrelation. 

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………. 
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Assumptions 12.5  DETECTION OF AUTOCORRELATION 

There are many methods of detecting the presence of autocorrelation. Let us 
discuss them now. 

12.5.1 Graphical Method  

A visual examination of OLS residuals 𝑒௧ quite often conveys the presence of 
autocorrelation among the error terms 𝑢௧. Such a graphical presentation (Fig. 
12.3) is known as the ‘time sequence plot’.  The first part of this figure does not 
show any clear pattern in the movement of the error terms. This means there is an 
absence of autocorrelation.  In the lower part of Fig. 12.3, you will notice that the 
correlation between the two residual terms is first negative and then becomes 
positive.   Therefore, plotting the sample residuals gives us the first indication on 
the presence or absence of autocorrelation. 

 
Fig. 12.3: Graphical Method for Detection of Autocorrelation 

12.5.2 Durbin-Watson Test 

The Durbin-Watson test, or the DW test as it is popularly called, is an analytical 
method of detecting the presence of autocorrelation. Its statistic is given by:  

𝑑 = ෌ (௘೟ି௘೟షభ)మ೙
೟సమ

෌ ௘೟
మ೙

೟సభ
        … (12.3) 

Equation (12.3) defines the d-statistic suggested by Durbin-Watson as the ratio of 
the sum of squared differences in the successive residuals to the residual sum of 
squares. For computing the d-statistic, we take the sample size to be (n–1) since 
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Autocorrelation one observation is lost in taking the successive differences. There are certain 
assumptions underlying the d-statistic. These are: 

(a) The regression model includes an intercept term. Therefore, this method 
cannot be used to determine autocorrelation in regression models 
without the intercept term (i.e. regression equation which passes through 
the origin).  

(b) The X variables are non-stochastic, i.e., their values are fixed in repeated 
samples.  

(c) The error term evolves as follows :  

 𝑢௧ = 𝜌𝑢௧ିଵ + 𝑣௧ ,  −1 ≤ 𝜌 ≤ 1   … (12.4) 

 Equation (12.4) states that the value of error term at time period t is 
dependent on the value of the error term in time-period (t–1) and a 
purely random term 𝑣௧. The extent of dependence on past value is 
measured by 𝜌 which lies between –1 and 1. 

 The regression model given in equation (12.4) is referred to as the first-
order auto-regression scheme. It is denoted by AR(1). The usage of the 
term ‘autoregressive’ implies that the error term 𝑢௧ is regressed on its 
own lagged value of one period, i.e., 𝑢௧ିଵ. It is therefore called the first-
order autoregressive scheme. If we include 2 lagged values (i. e. , 𝑢௧ିଵ 
and 𝑢௧ିଶ) then we have the AR(2) scheme. Likewise, when we extend 
the number of lagged values to ‘p’, we have the AR(p) scheme.  

(d) The regression model does not contain any lagged value of the 
dependent variable as one of the explanatory variables. In other words, 
the test is not applicable to models like:  

  𝑌௧ = 𝛽ଵ + 𝛽ଶ𝑋௧ + 𝛽ଷ𝑌௧ିଵ + 𝑢௧   … (12.5) 

 where 𝑌௧ିଵ is the one-period lagged-value of the dependent variable Y. 
Models of the above type are known as auto-regressive (AR) models. 
For such cases, the d-statistic cannot be used.  

We can estimate 𝜌 from equation (12.4) as follows: 

 𝜌ො = ∑ ௘೟௘೟షభ
೙
೟సమ

෌ ௘೟
మ೙

೟సభ
  

[Recall that the estimator of 𝑏ଶ in the two variable regression model is 𝑏ଶ = ఀ௫೔௬೔
ఀ௫೔

మ . 

We apply the same logic to derive 𝜌ො above]  

We can expand equation (12.3) to obtain  

𝑑 = ∑ ௘೟
మା∑ ௘೟షభ

మ ିଶ ∑ ௘೟௘೟షభ
∑ ௘೟

మ   

The above can be approximated to  

𝑑 ≈ 2 ൬1 − ∑ ௘೟௘೟షభ
೙
೟సమ
෌ ௘೟

మ೙
೟సభ

൰  
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We can take an approximate value of d as: 

 𝑑 ≈ 2(1 − 𝜌ො)        … (12.6) 

where the symbol denotes ‘approximately’. In equation (12.6), 𝜌ො is an 
estimator of the first order autocorrelation scheme. Table 12.1 presents the value 
of the d-statistic for different values of 𝜌ො. 

From Table 12.1 we find that 0 ≤ 𝑑 ≤ 4. The Durbin-Watson statistic thus 
provides a lower limit dL and an upper limit dU. The computed value of d is 

therefore a value between 0 and 4. From such a value, we can infer on the nature 
of autocorrelation as follows: 

a) If d is closer to 0, there is evidence of positive autocorrelation.  

b) If d is closer to 2, there is evidence of no autocorrelation. 
c) If d is closer to 4, there is evidence of negative autocorrelation.  

Table 12.1: Value of d-Statistic according to 𝝆ෝ  

Value of 𝜌ො Implication Value of d-statistic 

𝜌ො = −1 Perfect negative autocorrelation 4 

𝜌ො = 0 No autocorrelation 2 

𝜌ො = 1 Perfect positive autocorrelation  0 

 The steps in applying the DW test are therefore the following: 

1. Run the OLS regression and obtain the residuals 𝑒௧. 

2. Compute d  as:  

𝑑 =
෌ (௘೟ି௘೟షభ)మ೙

೟సమ
෌ ௘೟

మ೙
೟సభ

       

3. Find out the critical Table values 𝑑௅ and 𝑑௎ for given sample size and 
given number of explanatory variables.  

Follow the decision rule, as depicted in Fig. 12.4. 

 
Fig. 12.4: Range of Values of Durbin-Watson Statistic 
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Autocorrelation One drawback of the d-test is that it has two zones of indecision viz. dL < d < dU 
and (4  – dU < d < 4  – dL ). 

12.5.3 The Breusch-Godfrey (BG) Test  

To avoid the pitfalls of the Durbin Watson d-test, Breusch and Godfrey have 
proposed a test criterion for autocorrelation that is general in nature. This is in the 
sense that:  

(a) It can handle non-stochastic regressors as well as the lagged values of Yt ; 

(b) It can deal with higher-order autoregressive schemes such as AR(2), 
AR(3) … etc. 

(c) It can also handle simple or higher order moving averages. 

The BG-Test is also referred to as the LM (Lagrange Multiplier) Test (see Unit 
8). Let us now consider a two-variable regression model to see how the BG test 
works.   

𝑌௧ = 𝛽ଵ + 𝛽ଶ𝑋௧ + 𝑢௧       … (12.7) 

where ut follows a 𝑃௧௛order auto regressive scheme AR(P) like:  

𝑢௧ = 𝜌ଵ𝑢௧ିଵ + 𝜌ଶ𝑢௧ିଶ+. . . +𝜌ఘ𝑢௧ି௣ + 𝑣௧    … (12.8) 

where 𝑣௧ is the white noise or the stochastic error term. We wish to test: 

𝐻଴: 𝜌ଵ = 𝜌ଶ =. . . 𝜌௣ = 0      … (12.9) 

The null hypothesis says that there is no autocorrelation of any order. Now, the 
BG test involves the following steps: 

(a) Estimate the model 𝑌௧ = 𝛽ଵ + 𝛽ଶ𝑋௧ + 𝑢௧ by OLS method and obtain the 
residuals et. 

(b) Regress the residuals et on the p-lagged values of estimated residuals 
obtained in step (a) above, i.e., e(t -1), e(t – 2), ......., e(t – p) [as in equation 
(12.8)]. Here we take the residual et which are estimate of the error 𝑢௧, as 
the error term is not known.  

(c) Obtain R2 from the auxiliary regression (12.8) in the step (b) above. 

(d) Now, for large samples, the Breusch and Godfrey test statistic is 
computed as:  

(𝑛 − 𝑝)𝑅ଶ~𝜒௣
ଶ      … (12.10) 

It is called LM test, as it has a similar form to the LM test described in Unit 8. 
The BG test statistic follows chi-squares distribution with p degrees of freedom 
where p is the number of regressors in the auxiliary regression (equation (12.8)). 
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We draw inferences from the BG test as follows: 

(i) If (𝑛 − 𝑝)𝑅ଶ > 𝜒௖௥௜௧௜௖௔௟
ଶ , we reject H0 and conclude that at least one  is 

statistically different from zero, i.e., there exists autocorrelation.  

(ii) If (𝑛 − 𝑝)𝑅ଶ < 𝜒௖௥௜௧௜௖௔௟
ଶ , we do not reject H0 and conclude that there 

exists no autocorrelation.  

Check Your Progress 2 [Answer the questions in 50-100 words within the space 
given] 

1) State the methods of detecting autocorrelation. 
……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………. 

2) Specify the test statistic applied in the DW test. 
……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………. 

3) State the assumptions under which the DW test is valid. 
……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………. 

4) Point out the limitations of the DW test. 

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………. 
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Autocorrelation 5) In what ways the BG test for autocorrelation is an improvement over the 
DW test? 

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………. 

12.6 REMEDIAL MEASURES FOR 
AUTOCORRELATION 

To suggest remedial measures for autocorrelation, we assume the nature of inter-
dependence in the error term 𝑢௧ in a regression model like: 

𝑌௧ = 𝛽ଵ + 𝛽ଶ𝑋௧ + 𝑢௧      … (12.11)  

 and that the error term is following an AR (1) scheme like: 

𝑢௧ = 𝜌𝑢௧ିଵ + 𝑣௧                −1 ≤ 𝜌 ≤ 1    … (12.12) 

 where 𝑣௧ is assumed to follow the OLS assumptions. We first consider the case 
where 𝜌 is known. Here, transforming the model in a certain manner (called as 
the Cochrane Orcutt procedure) will reduce the equation to an OLS compatible 
model. When 𝜌 is not known, we need some simple approaches which help us in 
overcoming the situation of autocorrelation. Let us study these approaches now. 

12.6.1 Autoregressive Scheme is Known: Cochrane-Orcutt Transformation  

Suppose we know the value of 𝜌. This helps us to transform the regression model 
given at (12.11) in a manner that the error term becomes free from 
autocorrelation. Subsequently, we apply the OLS method to the transformed 
model. For this, we consider a one-period lag in (12.11) as:  

𝑌௧ିଵ = 𝛽ଵ + 𝛽ଶ𝑋௧ିଵ + 𝑢௧ିଵ     … (12.13) 

Let us multiply equation (12.13) on both the sides by 𝜌. We obtain: 

𝜌𝑌௧ିଵ = 𝜌𝛽ଵ + 𝜌𝛽ଶ𝑋௧ିଵ + 𝜌𝑢௧ିଵ    … (12.14) 

Let us now subtract equation (12.14) from equation (12.11) to obtain:  

(𝑌௧ − 𝜌𝑌௧ିଵ) = 𝛽ଵ(1 − 𝜌) + 𝛽ଶ(𝑋௧ − 𝜌𝑋௧ିଵ) + 𝑣௧   … (12.15) 

Note that we have used 𝑣௧ for the new disturbance term above. Let us now 
denote:  

𝑌௧
∗ = (𝑌௧ − 𝜌𝑌௧ିଵ)  

𝑋௧
∗ = (𝑋௧ − 𝜌𝑋௧ିଵ)  

 𝛽ଵ
∗ = 𝛽ଵ(1 − 𝜌) 
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The transformed model will be 

𝑌௧
∗ = 𝛽ଵ

∗ + 𝛽ଶ𝑋௧
∗ + 𝑣௧        … (12.16) 

Now, the transformed variables 𝑌𝑡∗and 𝑋𝑡∗will have the desirable BLUE 
property. The estimators obtained by applying the OLS method to (12.16) are 
called the Generalized Least Squares (GLS) estimators. The transformation as 
suggested above is known as the Cochrane-Orcutt transformation procedure. 

12.6.2 Autoregressive Scheme is not Known 

Suppose we do not know 𝜌. Thus, we need methods for estimating 𝜌. We first 
consider the case where 𝜌 = 1. This amounts to assuming that the error terms are 
perfectly positively autocorrected. This case is called as the First Difference 
Method. If this assumption holds, a generalized difference equation can be 
considered by taking the difference between (12.11) and its first order 
autoregressive schemes as:  

𝑌௧ − 𝑌௧ିଵ = 𝛽ଶ(𝑋௧ − 𝑋௧ିଵ) + 𝑣௧      … (12.17) 

i.e., 𝛥𝑌௧ = 𝛽ଶ𝛥𝑋௧ + 𝑣௧       … (12.18) 

where the symbol 𝛥 (read as delta) is the first difference operator. Note that the 
difference model (12.17) has no intercept. If 𝜌 is not known, then we can 
estimate 𝜌 by the following two methods. 

(i) Durbin Watson Method  

 From equation (12.6) we see that d-statistic and 𝜌 are related. We can this 
relationship to estimate 𝜌. The d-statistic and 𝜌 are related as:  

𝜌 ≈ 1 − ௗ
ଶ
         … (12.19)  

 If the value of d is known, then 𝜌ො can be estimated from the d-statistic.  

((ii) 𝐓he OLS Residuals (𝒆𝒕) Method 

Here, we consider the first order autoregression scheme as in (12.12), i.e., 

𝑢௧ = 𝜌𝑢௧ିଵ + 𝑣௧. Since 𝑢௧ is not directly observable, we use its sample 
counterpart 𝑒௧ and run the following regression:  

𝑒௧ = 𝜌ො𝑒௧ିଵ + 𝑣௧        … (12.20) 

Note that 𝜌ො is an estimator of 𝜌. In small samples, 𝜌ො is a biased estimator of 𝜌. As 
sample size increases, the bias disappears.  

12.6.3 Iterative Procedure 

This is also called as the Cochrane-Orcutt iterative procedure. We consider the 
two variable model with the AR(1) scheme for autocorrelation as discussed 
earlier. That is, we consider: 𝑌௧ = 𝛽ଵ + 𝛽ଶ𝑋௧ + 𝑢௧ where 𝑢௧ = 𝜌𝑢௧ିଵ + 𝑣௧ with 
−1 ≤ 𝜌 ≤ 1. We have taken only one explanatory variable for simplicity but we 
can have more than one explanatory variable too. The iterative procedure 
suggested by Cochrane-Orcutt has the following steps: 
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Autocorrelation (i) Estimate the equation 𝑢௧ = 𝜌𝑢௧ିଵ + 𝑣௧ by the usual OLS method. 

(ii) From the above, obtain the residuals 𝑒௧.  

(iii) Using the residuals 𝑒௧, run the regression 𝑒௧ = 𝜌ො 𝑒௧ିଵ + 𝑣௧ and obtain 𝜌ො.  

(iv)  Use 𝜌ො obtained in (iii) above to multiply the equation 𝑢௧ = 𝜌𝑢௧ିଵ + 𝑣௧.  

(v) Now, obtain the generalized difference equation as: 

𝑌௧
∗ = 𝛽ଵ

∗ + 𝛽ଶ𝑋௧
∗ + 𝑒௧ where, 𝑌௧

∗ = 𝑌௧ − 𝑌௧ିଵ, 𝑋௧
∗ = 𝑋௧ − 𝜌𝑋௧ିଵ and  

 𝛽ଵ
∗ = 𝛽ଵ(1 − 𝜌ො) 

(vi) We are not sure that 𝜌ො estimated in (iii) above is the best estimate of 𝜌. 
Therefore, we repeat the steps (ii) and (iii) to obtain the new residuals 
𝑒௧

∗.  

(vii) Now estimate the regression 𝑒௧
∗ = 𝜌ො𝑒௧ିଵ

∗ + 𝑤௧to obtain the new estimate 
of 𝜌ො. 

We thus obtain the second-round estimate of 𝜌. Since we are not sure if the 
second round estimate of  is the best, we go for the third round estimate and 
so on. We repeat the same steps again and again. Due to this repetitive steps 
followed, this procedure, suggested by Cochrane-Orcutt, is called the ‘iterative 
procedure’. We stop the iteration when the successive estimates of  differ by 
a small amount (less than 0.01 or 0.005). 

12.7  LAGGED DEPENDENT VARIABLE 
The Durbin-Watson method is not applicable when the regression model includes 
lagged value of the dependent variable as one of the explanatory variables. In 
such models, the h-statistic suggested by Durbin is used to identify the presence 
of autocorrelation in the regression model. Let us consider the regression model 
as:  

𝑌௧ =  𝛽ଵ + 𝛽ଶ𝑋௧ + 𝛽ଷ𝑌௧ିଵ + 𝑣௧      … (12.21) 

In equation (12.21), we have two explanatory variables: 𝑋௧ and 𝑌௧ିଵ with 𝑌௧ିଵ as 
a lagged dependent variable (with one-period lag). For equation (12.21) the d-
statistic is not applicable to detect autocorrelation. For such models, Durbin 
suggests replacing the d-statistic by the h-statistic taken as: 

 ℎ ≈ 𝜌ො = ට
௡

ଵି௡ ௏௔௥(௕య)       … (12.22) 

where, n = sample size, 𝜌ො = the estimator of the autocorrelation coefficient, and 

𝑣𝑎𝑟(𝑏ଷ) = variance of estimator of 𝛽ଷ, the lagged dependent variable in (12.21).   

The null hypothesis is  𝐻଴: 𝜌 = 0. Durbin has shown that for large samples the h-
statistic is distributed as h~𝑁(0,1). For normal distribution, we know that the 
critical value at 5 per cent level of significance is 1.96 and at 1 per cent level of 
significance it is 2.58.  Using this information, we can draw inference from 
equation (12.22) as follows:  
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(i) If the computed value of h is greater than the critical value of h, we reject 
H0. We interpret the result as existence of no autocorrelation.  

(ii) If the computed value of h is less than the critical value of h, we do not 
reject H0. We interpret the result as existence of autocorrelation.  

Check Your Progress 3 [Answer the questions in 50-100 words within the space 
given] 

1) Outline the transformation procedure suggested by Cochrane-Orcutt to 
resolve the problem of autocorrelation. 

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………. 

2) State how the iterative procedure of Cochrane-Orcutt is applied in the 
case of autocorrelation in a dataset. Why is it called iterative procedure? 

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………. 

3) What is the advantage of using the h-statistic in regression model having 
autocorrelation problem? 
……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………. 

11.8 LET US SUM UP  
The unit has discussed the concept of autocorrelation in regression models. The 
consequences of the presence of autocorrelation, its detection and techniques that 
provide remedial measures for such situations have been explained. The unit also 
discusses the case of autocorrelation in regression models with lagged dependent 
variables.  
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Autocorrelation 11.9  ANSWERS/ HINTS TO CHECK YOUR 
PORGRESS EXERCISES  

Check Your Progress 1 

1) Autocorrelation refers to the presence of correlation between the error terms 
of any two observations. This means if Ui and Uj are the error terms, then 
Corr (Ui, Uj) ≠ 0 for i ≠ j. In the CLRM, one of our assumptions is that the 
Corr (Ui, Uj) = 0. This means the two error terms are not correlated. 
Violation of this assumptions is a situation of autocorrelation. 

2) The problem of autocorrelation is more common in time series data. This is 
because a phenomena affecting the error term in one point of time is more 
likely to be influencing the error term in the next point of time. This is 
especially identified as the factor of ‘inertia or sluggishness’. Across units of 
cross section this is less likely. But it cannot be ruled out even in cross 
section data. In such cases, due to the spatial effect in cross section data, 
which is more like a demonstration effect, it is distinctly termed as spatial 
correlation.  

3) Inertia or sluggishness, specification error in the model, cobweb phenomenon 
and data smoothening. 

4) The consequences are: (i) least squares estimators are not efficient, (ii) the 
estimated variances of OLS estimates are biased, (iii) the standard error of 
true variances are underestimated, (iv) we are more likely to commit an error 
in deciding on the hypothesis of ‘no statistical significance’ of a particular 
estimated coefficient i.e. the decisions based on t and F tests would be 
unreliable, (v) estimated error variance would be biased and (vi) the value of 
R2 would be misleading or unreliable. 

Check Your Progress 2 

1) Time sequence plotting (graphical method), Durbin-Watson test and Breusch-
Godfrey (BG) Test.  

 

2) 𝒅 =
෍ (𝒆𝒕ି𝒆𝒕ష𝟏)𝟐

𝒏

𝒕స𝟐

෍ 𝒆𝒕
𝟐

𝒏

𝒕స𝟏

. It is the ratio of the sum of the squared differences in the 

successive residuals to the residual sum of squares. 

3) The regression model includes an intercept term, the X variables are non-
stochastic, the error term follows the following mechanism 𝑢௧ = 𝜌𝑢௧ିଵ + 𝑣௧, 
−1 ≤ 𝜌 ≤ 1, and the regression does not contain any lagged values of the 
dependent variable as one of the explanatory variables.  

4) The one drawback of the d-test is that it has two zones of indecision, viz., dL 
< d < dU and (4 – dU < d < 4 – dL ). 
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5) (i) It can handle non-stochastic regressors as well as the lagged values of Yt , 
(ii) it can deal with higher-order autoregressive schemes such as AR(2)… etc. 
and (iii) it can also handle simple or higher order moving averages. 

Check Your Progress 3 

1) In this method we lag the regression equation by one period; multiply it by 𝝆; 
and subtract it from the original regression equation. This gives us a 
transformed regression model. When estimated by OLS method, the 
estimators of the transformed model are BLUE.  

2) In Sub-Section 12.6.3 we have outlined steps of the Cochrane-Orcutt iterative 
procedure. You should go through it and answer.   

3) The h-statistic can be used in regression models having lagged dependent 
variables as explanatory variables.  

 



UNIT 13 MODEL SELECTION CRITERIA 
Structure 

13.0 Objectives 

13.1 Introduction 

13.2 Issues in Specification of Econometric Model 

 13.2.1 Model Specification 

 13.2.2 Violation of Basic Assumptions 

13.3 Consequences of Specification Errors  

 13.3.1 Inclusion of Irrelevant Variable 

 13.3.2 Exclusion of Relevant Variable 

 13.3.3 Incorrect Functional Form 

13.4 Error of Measurement in Variables 

13.4.1 Measurement Error in Dependent Variable 

13.4.2 Measurement Error in Independent Variable 

13.5 Let Us Sum Up 

13.7 Answers/ Hints to Check Your Progress Exercises 

13.0 OBJECTIVES 
After going through this unit, you will be able to 

 appreciate the importance of correct specification of an econometric 
model; 

 identify the important issues in specification of econometric models; 

 find out the consequences of including an irrelevant variable; 

 find out the consequences of excluding a relevant variable; and 

 find out the impact of measurement errors in dependent and independent 
variables. 

13.1 INTRODUCTION 
In the previous Units of the course we have discussed about various econometric 
tools. We began with the classical two variable regression model. Later on, we 
extended it to the classical multiple regression model. The steps of carrying out 
the ordinary least squares (OLS) method were discussed in details. Recall that the 
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classical regression model is based on certain assumptions. When these 
assumptions are met, the OLS estimators are the best linear unbiased estimators 
(BLUE). When these assumptions are violated the OLS estimators are not BLUE 
– they lose some of their desirable properties. Therefore, when some of the 
classical assumptions are not fulfilled, we have to adopt some other estimation 
method.  

Thus far our objective has been to explain how various estimation methods are 
applied. Now let us look into certain other important issues regarding 
specification of econometric models. 

13.2  ISSUES IN SPECIFICATION OF 
ECONOMETRIC MODEL 

A model refers to a simplified version of reality. It allows us to explain, analyse 
and predict economic behavior. An economic model can be for a microeconomic 
agent such as household or firm. In macroeconomics, it represents the behavior 
of the economy as a whole. In economic models we identify relevant economic 
variables (such as income, output, expenditure, investment, saving, exports, etc.) 
and establish relationship among them. The relationships among these variables 
may be expressed through diagrams or mathematical equations. There could be 
economic models without mathematical expressions, but such models may not be 
precise.  

Recall from Unit 1 of this course that there are eight steps to be followed in an 
econometric study. The first three steps are as follows: 

(i) Construction of a statement of theory or hypothesis 

(ii) Specification of mathematical model of the theory 

(iii) Specification of econometric model 

Based on economic theory or logic we construct the hypothesis. We specify the 
hypothesis in mathematical terms. Further, we add a stochastic error term (𝑢௜) to 
transform it into an econometric model. We decide on the estimation method 
(such as OLS, GLS, maximum likelihood, etc.) subsequently.  

13.2.1 Model Specification 

While building an econometric model we first consider the logic or theory behind 
the model. The empirical or methodological considerations come later. The 
accuracy of the estimated parameters and the inferences drawn from the model 
depend upon the correct specification of the model. 

An econometric model comprises a dependant variable, independent variable(s) 
and the error term. The dependant variable should be logically explained by the 
independent variables. Next is the functional form of the regression model, which 
should be specified correctly.  
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Let me illustrate the point through an example. In the case of a firm, we assume 
that there are two factors of production, viz., capital and labour. We club all types 
of labour into a homogeneous category – we do not distinguish between a 
manager and a worker in the field! Thus you should remember that we ignore the 
details and concentrate on the major issues in a model. Secondly, we assume that 
the production function takes a particular form, say Cobb-Douglas. But, 
remember that it is just an assumption! The production function in reality could 
be of some other form. Thus we have to logically explain the functional form 
(regression equation) of the model.  

Regression analysis derives its robustness from the assumption that the 
econometric model under study is correctly specified. In Unit 4 of this course we 
specified the assumptions such that the econometric model must bring efficient 
estimates of the parameters in the model. Ordinary Least Squares (OLS) method 
is based on the assumption that regression model is correctly specified. Correct 
specification has three important elements: 

a) all the necessary independent variables are included in the model, 

b) no redundant variable IS included in the model, and  

c) the model is specified using the correct functional form. 

13.2.2 Violation of Basic Assumptions 

An economic model is based on certain assumptions. Recall that we made the 
following assumptions regarding the multiple regression model (see Unit 7): 

a) The regression model is linear in parameters 

b) 𝐸(𝑋௜𝑢௜) = 0 (regressor is non-stochastic)  

c) 𝐸(𝑢௜) = 0  

d) 𝐸(𝑢௜)ଶ = 𝜎ଶ 

e) 𝐸൫𝑢௜𝑢௝൯ = 0 for 𝑖 ≠ 𝑗 

f) The explanatory variables (𝑋௜) are independent of one another. 

Let us look into the implications of the above assumptions. Assumption (a) says 
that the regression model is linear in parameters. Standard regression model 
usually takes the following form  

𝑌௜ = 𝛽ଵ + 𝛽ଶ𝑋ଶ௜ + 𝛽ଷ𝑋ଷ௜ + 𝑢௜      … (13.1) 

Equation (13.1) is linear in parameters (there are no such terms as 𝛽௜
ଶ , for 

example) and linear in variables. Examples of non-linear regression models are 
logarithmic functions, logistic functions, trigonometric functions, exponential 
functions, etc. For estimation of non-linear models, the OLS method cannot be 
applied.  



 

 
 

180 

Econometric Model 
Specification and 
Diagnostic Testing 

Assumption (b) says that 𝑋௜ and 𝑢௜ are independent. Thus if we take the 𝑋௜ values 
randomly, the joint probability of both that 𝑋௜ and 𝑢௜ will not be zero. In order to 
avoid this problem we assume that 𝑋௜ is non-stochastic. All explanatory variables 
are fixed in repeated sampling.  

Assumption (c) says that the mean of the error term (𝑢௜) is zero. There could be 
errors in individual observations; on the whole these errors cancel out. If 
𝐸(𝑢௜) ≠ 0, OLS estimator of the intercept term (𝛽ଵ) will be biased. Estimators of 
the slope parameters 𝛽ଶ  and 𝛽ଷ  will remain unbiased. For example, suppose 
𝐸(𝑢௜) = 3. In that case 𝐸(𝑌௜) will be  

𝐸(𝑌௜) = 𝐸(𝛽ଵ + 𝛽ଶ𝑋ଶ௜ + 𝛽ଷ𝑋ଷ௜ + 𝑢௜) 

Remember that 𝛽௜  are parameters of the model. They are constants. We have 
assumed 𝑋௜  to be fixed across samples. Thus  

𝐸(𝑌௜) = 𝛽ଵ + 𝛽ଶ𝑋ଶ௜ + 𝛽ଷ𝑋ଷ௜ + 𝐸(𝑢௜)    … (13.2) 

If 𝐸(𝑢௜) = 3, we can say that 

𝐸(𝑌௜) = 𝛽ଵ + 𝛽ଶ𝑋ଶ௜ + 𝛽ଷ𝑋ଷ௜ + 3 

Thus the intercept term will be  (𝛽ଵ + 3). Remember that if assumption (d) is 
violated we have the problem of heteroscedasticity, which is discussed in Unit 
11. If assumption (e) is violated we have the problem of autocorrelation, that we 
have discussed in Unit 12. In case the assumption (f) is violated we have the 
problem of multicollinearity (see Unit 10). 

Check Your Progress 1 

1) List the assumptions of the classical regression model.  
.......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 ....................................................................................................................... 

.......................................................................................................................  

2) Do you agree that correct specification of an econometric model is 
important? Why? 
……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

…………………………………………………………………………… 



 

 
 

181 

Model Selection 
Criteria 

3) What are the implications of violations of the basic assumptions classical 
regression model?  

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

....................................................................................................................... 

4) List three types of specification error that we encounter in an econometric 
model.  

 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 ....................................................................................................................... 

13.3 CONSEQUENCES OF SPECIFICATION 
ERRORS 

As pointed out earlier, we usually encounter three kinds of problems in an 
econometric model: 

a) Inclusion of irrelevant/redundant variables 

b) Omission of relevant variables 

c) Incorrect functional form of the model 

Each of the above problem results in a different kind of bias. We discuss each of 
these problems below. 

13.3.1 Inclusion of Irrelevant Variable 

Let us consider the case where some irrelevant variable is included in the 
regression model. Suppose the true model is  

Yi = β0 + 𝛽ଵ𝑋ଵ௜ + ui       … (13.3) 

But we somehow include a redundant variable, i.e., we estimate the following 
equation: 

𝑌௜ = 𝛽଴௦  +  𝛽ଵ௦𝑋ଵ௜ + 𝛽ଶ௦𝑋ଶ௜ + vi     … (13.4) 

For the true model (13.3), the slope coefficient is expressed as 

 𝛽መଵ =  ∑ ௬௫భ
∑ ௫భ

మ        … (13.5)  

which is unbiased. 

For the model (13.4) that we have taken, we obtain 
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𝛽෨ଵ = 𝛽መଵ௦ =  (∑ ௬௫భ)൫∑ ௫మ
మ൯ି(∑ ௬௫మ) (∑ ௫భ௫మ)

∑ ௫భ
మ ∑ ௫మ

మି (∑ ௫భ௫మ)మ     … (13.6) 

Now the true model in deviation form is  

𝑦௜ =  𝛽ଵ𝑥ଵ +  (𝑢௜ − 𝑢ത)       … (13.7) 

Substituting for 𝑦௜ from (13.7) into (13.6) and simplifying, we obtain 

E(𝛽෨ଵ) = E(𝛽መଵ௦) =  𝛽ଵ  ∑ ௫భ
మ ∑ ௫మ

మି(∑ ௫భ௫మ)మ 
∑ ௫భ

మ ∑ ௫మ
మି (∑ ௫భ௫మ)మ    … (13.8) 

From equation (13.8) we find that 

E(𝛽෨ଵ) = 𝛽ଵ 

Thus, inclusion of an irrelevant variable provides us with unbiased estimator of 
𝛽ଵ.The estimator of the redundant variable 𝛽መଶ௦ is given by  

𝛽መଶ௦ =  (∑ ௬௫మ)൫∑ ௫భ
మ൯ି(∑ ௬௫భ) (∑ ௫భ௫మ)

∑ ௫భ
మ ∑ ௫మ

మି (∑ ௫భ௫మ)మ                                         … (13.9) 

If we substitute for 𝑦௜ from (13.7) in (13.9) and re-arrange terms, we obtain 

E(𝛽෨ଶ) =E(𝛽መଶ௦) = 𝛽ଶ (∑ ௫భ௫మ)൫∑ ௫భ
మ൯ି(∑ ௫భ௫మ)൫∑ ௫భ

మ൯  
∑ ௫భ

మ ∑ ௫మ
మି (∑ ௫భ௫మ)మ    … (13.10) 

Thus, E(𝛽෨ଶ) = E(𝛽መଶ௦) = 0 

So, we find that 𝛽መଶ௦ which is absent from the true model has its coefficient 0. 
Thus we obtain unbiased estimators for both the parameters.  

This leads us to conclude that inclusion of irrelevant variables is not that harmful 
as omission of relevant variables. As an extra variable is added to the model, we 
observe that there is an increase in R-squared. The variance of the parameters 
will not be efficient.  

Therefore, the specification error in the nature of inclusion of irrelevant variables 
in the model, will produce unbiased but inefficient least squares estimators of the 
parameters. The larger variance reduces the precision of the estimates resulting in 
wider confidence intervals. This may lead to type II error (the error of not 
rejecting a null hypothesis when the alternative hypothesis is actually true).  

13.3.2 Omission of Relevant Variable 

Now let us look into the other side of the spectrum – excluding a relevant 
variable. Since a relevant variable is not included in the model (although it 
influences the dependent variable) its impact will be included in the residuals. As 
a result, the residuals will show a systematic pattern rather than being white noise 
as required by Gauss-Markov theorem. Also, the coefficient of the included 
variable will be biased. 

Suppose the true equation (in deviation form) is  

𝑦 = 𝛽ଵ𝑥ଵ + 𝛽ଶ𝑥ଶ + u       … (13.11) 
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Instead of estimating equation (13.11) suppose we omitted  𝑥ଶ. The following 
equation is estimated, 

𝑦 = 𝛽ଵ
∗𝑥ଵ + e        … (13.12) 

Equation (13.12) is a case of omitted variable, and hence incorrect model 
specification. In the model with omitted variable (incorrect model) the estimate 
of 𝛽ଵ

∗ is 

𝛽መଵ
∗= ∑ ௫భ௬ 

∑ ௫భ
మ          … (13.13) 

In order to calculate the bias in the estimated value of 𝛽ଵ in the incorrect model 
(equation (13.12)) as compared to the true model (equation (13.11)), we take the 
following steps: 

Substituting the expression of y from the true model in (13.11), we get 

𝛽መଵ
∗ = ∑ ௫భ(ఉభ௫భ ା ఉమ௫మ ା ௨)

∑ ௫భ
మ  = 𝛽ଵ +  𝛽ଶ  ∑ ௫భ௫మ

∑ ௫భ
మ + ∑ ௫భ௨ 

∑ ௫భ
మ     … (13.14) 

Since E (∑ 𝑥ଵ 𝑢) = 0 we get 

E (𝛽መଵ
∗) = 𝛽ଵ + 𝑏ଶଵ𝛽ଶ       … (13.15) 

where 𝑏ଶଵ = ∑ ௫భ௫మ 
∑ ௫భ

మ  is the regression coefficient from a regression of X2 (omitted 

variable) on X1.   

Thus 𝛽መଵ
∗ is a biased estimator for 𝛽ଵ and the bias is given by 

Bias = (coefficient of the excluded variable) × (regression coefficient in a 
regression of the excluded variable on the included variable) … (13.16) 

In the deviation form, the three-variable population regression model can be 
written as 

𝑦௜ = 𝛽ଶ𝑥ଶ௜ + 𝛽ଷ𝑥ଷ௜ + ( 𝑢௜ − 𝑢ത)    … (13.17) 

First multiplying by 𝑥ଶ and then by 𝑥ଷ, the usual normal equations are 

∑ 𝑦௜ 𝑥ଶ௜ = 𝛽ଶ ∑ 𝑥ଶ௜
ଶ + 𝛽ଷ ∑ 𝑥ଶ௜ 𝑥ଷ௜ + ∑ 𝑥ଶ௜ ( 𝑢௜ − 𝑢ത) … (13.18) 

∑ 𝑦௜ 𝑥ଷ௜ = 𝛽ଶ ∑ 𝑥ଶ௜ 𝑥ଷ௜ +  𝛽ଷ ∑ 𝑥ଷ௜
ଶ + ∑ 𝑥ଷ௜ ( 𝑢௜ − 𝑢ത) … (13.19) 

Dividing (13.18) by ∑ 𝑥ଶ௜
ଶ  on both sides, we obtain 

∑ ௬೔௫మ೔
∑ ௫మ೔

మ  = 𝛽ଶ +  𝛽ଷ
∑ ௫మ೔௫య೔

∑ ௫మ೔
మ +  ∑ ௫మ೔( ௨೔ି ௨ഥ)

∑ ௫మ೔
మ    … (13.20) 

Thus we have 

by2 = ∑ ௬೔௫మ೔
∑ ௫మ೔

మ  

b32 = ∑ ௫మ೔௫య೔
∑ ௫మ೔

మ  
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Hence (13.20) can be written as  

by2 = 𝛽ଶ +  𝛽ଷ b32 + ∑ ௫మ೔( ௨೔ି ௨ഥ)
∑ ௫మ೔

మ     … (13.21) 

Taking the expected value of (13.21) we obtain 

E(by2) = 𝛽ଶ +  𝛽ଷ b32      … (13.22) 

Similarly, if 𝑥ଶ is omitted from the model, the bias in E(by3) can be calculated.  

The variance of 𝛽ଵ
∗ (parameter of the incorrect model) can also be derived by 

using the formula for variance. As it is a bit complex, we do not present it here. 
You should note that the variance of 𝛽ଵ

∗ is higher than that of 𝛽ଵ. An implication 
of the above is that usual tests of significance concerning parameters are invalid, 
if some of the relevant variables are excluded from a model. 

Thus we know that 

(i) When an irrelevant variable is included in the model: (a) the 
estimators of parameters are unbiased, (b) efficiency of the estimators 
decline, and (c) estimator of the error variance is unbiased. Thus 
conventional tests of hypothesis are valid. The inferences drawn could 
be somewhat erroneous.  

(ii) When a relevant variable is dropped from the model: (a) estimators of 
parameters are biased, (b) efficiency of estimators decline, and (c) 
estimator of error variance is biased. Thus conventional tests of 
hypothesis are invalid. The inferences drawn are faulty. 

13.3.3 Incorrect Functional Form  

Apart from inclusion of only relevant variables in an econometric model, another 
specification error pertains to functional form. There is a tendency the part of 
researchers to assume a linear relationship between variables. This however is 
not always true. If the true relationship is non-linear and we take a linear 
regression model for estimation, we will not be able to draw correct inferences. 
There are test statistics available to choose among functional forms. We will 
discuss these test statistics in Unit 14. 

 

Check Your Progress 2 

1) Explain the consequences of inclusion of an irrelevant variable.  
……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

………………………………………………………………………….... 
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2) Explain the consequences of excluding a relevant variable. 

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

....................................................................................................................... 

13.4 ERROR OF MEASUREMENT IN VARIABLES 
So far we have assumed the variables in the econometric model under study are 
measured correctly. It means that there are no measurement errors in both 
explained and explanatory variables. Sometimes we do not have data on the 
variables that we want to use in the model. This could be for various reasons such 
as non-response error, reporting error, and computing error.  A classic example of 
measurement error pertains to the variable permanent income used in the Milton 
Friedman model. Measurement error in variables is a serious problem in 
econometric studies. There are two types of measurement errors: 

(i) Measurement error in dependent variable, and 

(ii) Measurement error in independent variable.  

13.4.1 Measurement Error in Dependent Variable 

Let us consider the following model: 

𝑌௜
∗ = 𝛼 + 𝛽𝑋௜ + 𝑢௜       … (13.23) 

where 𝑌௜
∗ is permanent consumption expenditure 

 𝑋௜ is current income, and 

 𝑢௜ is the stochastic disturbance term. 

(we place a star mark (*) on the variable that is measured with errors)  

Since 𝑌௜
∗ is not directly measureable, we may use an observable expenditure 

variable 𝑌௜ such that 

 𝑌௜ = 𝑌௜
∗ + 𝑒௜        … (13.24) 

where 𝑒௜ denote measurement error in 𝑌௜
∗. 

Therefore, instead of estimating  

𝑌௜
∗ = 𝛼 + 𝛽𝑋௜ + 𝑢௜, we estimate 

𝑌௜ =  𝛼 + 𝛽𝑋௜ + 𝑢௜ + 𝑒௜      

 =  𝛼 + 𝛽𝑋௜ + (𝑢௜ + 𝑒௜) 
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Let us re-write the above equation as 

𝑌௜ =  𝛼 + 𝛽𝑋௜ + 𝑣௜        … (13.25) 

where 𝑣௜ = 𝑢௜ + 𝑒௜  

In equation (13.25) we take 𝑣௜  as a composite error term comprising population 
disturbance term (𝑢௜) and measurement error term (𝑒௜). 

Let us assume that the following classical assumptions hold 

a)  E(𝑢௜) = E(𝑒௜) = 0 

b)  Cov (𝑋௜, 𝑢௜) = 0 

c)  Cov (𝑢௜, 𝑒௜) = 0 

An implication of (c) above is that the stochastic error term and the measurement 
error term are uncorrelated. Thus expected value of the composite error term is 
zero; 𝐸(𝑣) =  0. By extending the logic given in Unit 4, we can say that 𝐸൫𝛽መ൯ =
𝛽. It implies that 𝛽መ  is unbiased.  

Now let us look into the issue of variance in the case of measurement error in the 
dependent variable. As you know, variance of the estimator 𝛽መ  in a two variable 
regression model (13.23) is given by 

Var(𝛽መ) = ఙೠ
మ

∑ ௫೔
మ, 

For the composite error term, this will translate into 

Var(𝛽መ) = ఙೠ
మାఙ೐

మ 
∑ ௫೔

మ  =  ఙೡ
మ

∑ ௫೔
మ      … (13.26) 

Thus we see that the variance of the error term is larger if there is measurement 
error in the dependent variable. This leads to inefficiency of the estimators. They 
are not best linear unbiased estimators (BLUE).  

13.4.2 Measurement Error in Independent Variable 

There could be measurement error in explanatory variables. Let us assume the 
true regression model to be estimated is  

𝑌௜ = 𝛼 + 𝛽𝑋௜
∗ + 𝑢௜       … (13.27) 

Suppose we do not have data on variable 𝑋௜
∗. On the other hand, suppose we have 

data on 𝑋௜. In that case, instead of observing 𝑋௜
∗, we observe  

𝑋௜ = 𝑋௜
∗ + 𝑤௜        … (13.28) 

where 𝑤௜ represents error of measurement in 𝑋௜
∗. 

In the permanent income hypothesis model, for example, 

𝑌௜ = 𝛼 + 𝛽𝑋௜
∗ + 𝑢௜       

where 𝑌௜ is current consumption expenditure 

 𝑋௜
∗ is permanent income 

  𝑢௜ is stochastic disturbance term (equation error) 
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From equation (13.27) and (13.28) we find that 

𝑌௜ = 𝛼 + 𝛽(𝑋௜ − 𝑤௜) + 𝑢௜      … (13.29) 

 = 𝛼 + 𝛽𝑋௜ + (𝑢௜ − 𝛽𝑤௜) 

 = 𝛼 + 𝛽𝑋௜ + 𝑧௜       … (13.30) 

where 𝑧௜ = (𝑢௜ − 𝛽𝑤௜) . You should notice that 𝑧௜  is made up of two terms: 
stochastic error and measurement error. 

Now, let us assume that 𝑤௜ has zero mean; it is serially independent; and it is 
uncorrelated with 𝑢௜ . Even in that case, the composite error term 𝑧௜  is not 
independent of the explanatory variable 𝑋௜. 

Cov (𝑧௜, 𝑋௜)   = E[𝑧௜ − 𝐸(𝑧௜)[𝑋௜ − 𝐸(𝑋௜)]    

        = E(𝑢௜ − 𝛽𝑤௜)(𝑤௜) 

  = E(−𝛽𝑤௜
ଶ) 

  = −𝛽𝜎௪
ଶ       … (13.31) 

From (13.31) we find that the independent variable and the error term are 
correlated. This violates the basic assumption of the classical regression model 
that the explanatory variable is uncorrelated with the stochastic disturbance term. 
In such a situation the OLS estimators are not only biased but also inconsistent, 
that is they remain biased even if the sample size n increases infinitely. 

Check Your Progress 3 

1) Explain the consequences measurement error in the dependent variable.  

 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 ....................................................................................................................... 

 .......................................................................................................................

 ....................................................................................................................... 

2) Explain the consequences of measurement error in the explanatory 
variable.  
.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

...................................................................................................................... 
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3) Measurement error in the dependent variable is a lesser evil than 
measurement error in the explanatory variable.  

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

.......................................................................................................................

....................................................................................................................... 

13.5 LET US SUM UP 
Correct specification of an econometric model determines the accuracy of the 
estimates obtained. Therefore, correct specification of an econometric model is 
very important. Economic theory and logic guide us in specification of 
econometric models.  

In order to correctly specify an econometric model all relevant explanatory 
variables should be included in the model. No relevant explanatory variable 
should be excluded from the model. Further, the functional form of the model 
should be correct.  

At times we do not get appropriate variable required in an econometric model. In 
such cases there could be cases where either dependent variable or independent 
variable is measured with certain error. Measurement error in dependent variable 
is a lesser evil than the measurement error in the independent variable.  

13.6 ANSWERS TO CHECK YOUR PROGRESS  
EXERCISES 

Check Your Progress 1 

1) The basic assumptions of the classical regression model are as follows:  

a)  The regression model is linear in parameters 

b) 𝐸(𝑋௜𝑢௜) = 0 (regressor is non-stochastic)  

c) 𝐸(𝑢௜) = 0  

d) 𝐸(𝑢௜)ଶ = 𝜎ଶ 

e) 𝐸൫𝑢௜𝑢௝൯ = 0 for 𝑖 ≠ 𝑗 

f) The explanatory variables (𝑋௜) are independent of one another. 

2) Go through Section 13.2. It is important because incorrect specification has 
serious implications on desirable properties of the estimators.  

3) Go through Sub-Section 13.2.2 and answer.  
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4) The important specific issues are: inclusion of irrelevant/redundant 
variables; omission of relevant variables; and incorrect functional form of 
the model 

Check Your Progress 2 

1)   The estimator is unbiased but inefficient. See Sub-Section 13.3.1. 

2)  The estimator is biased as well as inefficient. See Sub-Section 13.3.2.  

Check Your Progress 3 

1)  Go through Sub-Section 13.4.1 and answer.  

2)  Go through Sub-Section 13.4.2 and answer.  

3)  If there is measurement error in dependent variable the estimator is 
unbiased but inefficient. Measurement error in explanatory variable results 
in biased estimator. See Section 13.4 for details.  
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14.1 Introduction  

14.2 Objectives 

14.3 Tests for Identifying the Most Efficient Model 

14.3.1 The 𝑅ଶ Test and Adjusted 𝑅ଶ Test 

14.3.2 Akaike Information Criterion  

14.3.3 Schwarz Information Criterion 

14.3.4 Mallow’s 𝐶௣ Criterion 

14.4 Caution about Model Selection Criteria 

14.5 Let Us Sum Up 

14.6 Answers to Check Your Progress Exercises 

14.1 INTRODUCTION 

In the previous Unit we highlighted the consequences of specification errors. 
There could be three types of specification errors; inclusion of an irrelevant 
variable, exclusion of a relevant variable, and incorrect functional form. When 
the econometric model is not specified correctly, the coefficient estimates, the 
confidence intervals, and the hypothesis tests are misleading and inconsistent. In 
view of this, econometric models should be correctly specified.  

While building a model we face a lot of difficulties in specifying a model 
correctly. In some cases economic theory is quite transparent about the dependent 
variables and the independent variables. In some other cases still it is in a 
hypothesis stage. Researchers are still working in that area to confirm the 
hypothesis suggested by others. In such cases, what we have a dependent variable 
and a set of explanatory variables. Out of these explanatory variables we have to 
select the most appropriate ones.  

                                                
 Dr. Sahba Fatima, Independent Researcher, Lucknow. 
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Econometric theory suggests certain criteria and test statistics. On the basis of 
these criteria we select the most appropriate econometric model. We describe 
some of these criteria below.   

14.2 OBJECTIVES 
After going through this Unit, you should be in a position to  

 identify econometric models that are not specified correctly; 

 take remedial measures for correcting the specification error; and 

 evaluate the performance of competing models. 

14.3 TESTS FOR IDENTIFYING THE MOST 
EFFICIENT MODEL 

As pointed out above, econometric models should be specified correctly. Any 
spurious relationship should be identified and excluded from the model. There 
are certain tests for this purpose. These tests can be used under specific 
circumstances in conjunction with practical understanding of the variables and an 
enlightened study of it through the related literature. Following tests are most 
commonly used for model testing and evaluation.  

14.3.1 The R2 Test and Adjusted-R2 Test 

We have discussed the concept of coefficient of determination (𝑅ଶ) in Unit 4. As 
you know, the coefficient of determination indicates the explanatory power of a 
model. If, for example, 𝑅ଶ = 0.76  we can infer that 76 per cent variation in the 
dependent variable is explained by the explanatory variable in the model.  

We define R2 as follows: 

𝑅ଶ = ோௌௌ
்ௌௌ

= 1 −  ாௌௌ
்ௌௌ

        ... (14.1) 

where  TSS = Total Sum of Squares 

 ESS = Explained Sum of squares 

 RSS = Residual Sum of Squares 

As you know,  

TSS = RSS + ESS       ... (14.2) 

Dividing both sides of equation (14.2) by TSS, we find that 
ோௌௌ
்ௌௌ

+ ாௌௌ
்ௌௌ

= 1        ... (14.3) 

Since 𝑅ଶ =  ாௌௌ
்ௌௌ

 , we observe that 𝑅ଶ  lies between 0 and 1 necessarily. Its 

closeness to 1 indicates better fit of the model. If  𝑅ଶ is close to one, RSS is much 
smaller compared to ESS. Therefore, very little residual will be left. Thus a 
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model with higher R2 is preferred. You should however keep in mind that a very 
high R2 indicates the presence of multicollinearity in the model. If the R2 is high 
but the t-ratio of the coefficients are not statistically significant you should check 
for multicollinearity. The R2 is calculated on the basis of the sample data.  

Thus the explanatory variables included the model are considered for estimation 
of R2. Variables not included in the model do not account for the variation in the 
dependent variable. 

There is a tendency of the R2 to increase if more explanatory variables are added. 
Thus, we are tempted to add more explanatory variables to increase the 
explanatory power of the model. If we add irrelevant explanatory variables in a 
model, the estimators are unbiased, but there is an increase in the variance of the 
estimators. This makes forecast and analysis on the basis of such models 
unreliable.  

In order to overcome this difficulty, we use the ‘adjusted-R2’. It is denoted by 𝑅തଶ 
and defined as follows: 

𝑅തଶ = 1 − ாௌௌ (௡ି௞)⁄
்ௌௌ (௡ିଵ)⁄  = 1 − (1 − 𝑅ଶ) ௡ିଵ

௡ି௞
     … (14.4) 

where n is the number of observations and k is the number of regressors. As you 
know the TSS has a degree of freedom of (𝑛 − 1) while the ESS has a degree of 
freedom of (𝑛 − 𝑘). Thus,  𝑅തଶ takes into account the degrees of freedom of the 
model. The 𝑅തଶ penalises the addition of explanatory variables. It is observed that 
there is an increase in 𝑅തଶ only if the t-value (absolute number) of the additional 
explanatory variable is greater than 1. Hence, superfluous variables can be 
identified and eliminated from the model. The restriction here is to regress all the 
independent variable against the same dependent variable. 

Remember that we can compare the 𝑅തଶ  of two models only if the dependent 
variable is the same. For example, we cannot compare two models if in one 
model the explanatory variable is Y and in the other model the explanatory 
variable in logY.   

14.3.2 Akaike Information Criterion (AIC)  

Another method for identifying the mis-specification in a model is Akaike 
Information Criterion (AIC). This method also penalises the addition of 
regressors as we can see from the formula below: 

𝐴𝐼𝐶 = 𝑒ଶ௞ ௡⁄ ∑ ௨ෝ೔
మ

௡
 = 𝑒ଶ௞ ௡⁄ ோௌௌ

௡
      … (14.5) 

where k is the number of regressors (explanatory variables) and n is the number 
of observations. 

We can further simplify equation (14.5) as 

ln 𝐴𝐼𝐶 = ቀଶ௞
௡

ቁ + ln ቀோௌௌ
௡

ቁ       … (14.6) 
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where ln 𝐴𝐼𝐶 is the natural log of AIC, and ଶ௞
௡

  is the penalty factor. 

Remember that the model with a lower value of lnAIC is considered to be better. 
Thus, when we compare two models by using the AIC criterion, the model with 
lower value of AIC has a better specification. The logic is simple. An 
econometric model that reduces the residual sum of squares is a better specified 
model.  

14.3.3 Schwarz Information Criterion 

The Schwarz Information Criterion (SIC) also relies on the RSS, like the AIC 
criterion mentioned above. This method also is popular for analysing correct 
specification of an econometric model. The SIC is defined as follows: 

𝑆𝐼𝐶 = 𝑛௞ ௡⁄ ∑ ௨ෝమ

௡
 =  𝑛௞ ௡⁄ ோௌௌ

௡
       … (14.7) 

If we take in log-form, equation (14.7) is given as 

ln 𝑆𝐼𝐶  = ௞
௡

ln 𝑛 + ln ቀோௌௌ
௡

ቁ       … (14.8) 

where [(𝑘 𝑛⁄ ) ln 𝑛] is the penalty factor. Note that the SIC criterion imposes a 
harsher penalty for inclusion of explanatory variable compared to the AIC 
criterion.  

14.3.4 Mallow’s 𝑪𝒑 Criterion 

When we do not include all the relevant variables in a model, the estimators are 
biased. The Mallow’s Cp Criterion evaluates such bias to find out whether there 
is significant deviation from the unbiased estimators. Thus, the Mallow’s Cp 
Criterion helps us in selecting the best among competing econometric models. 

If some of the explanatory variables are dropped from a model, there is an 
increase in the residual sum of squares (RSS).  Let us assume that the true model 
has k regressors. For this model, 𝜎ොଶ is the estimator of true 𝜎ଶ. Now, suppose we 
drop p regressors from the model. The residual sum of squares obtained from the 
truncated model is 𝑅𝑆𝑆௣. The Mallow’s Cp Criterion is based on the following 
formula: 

𝐶௣ = ோௌௌ೛

ఙෝమ  − (𝑛 − 2𝑝)      ... (14.9) 

where n is the number of observations. 

While choosing a model according to the 𝐶௣ criterion, the model with the lowest 
𝐶௣ value is preferred.  

14.4 CAUTION ABOUT MODEL SELECTION 
CRITERIA  

We have emphasized earlier that econometric models should be based on 
economic theory and logic. Therefore, while constricting an econometric model, 
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you should go by the theoretical appropriateness of including or excluding a 
variable. In order to have a correctly specified model, a thorough understanding 
of the theoretical concepts and the related literature is necessary. Also, the model 
that we fit will only be as good as the data that we have collected. If the data 
collected does not suffer from, say, multicollinearity or autocorrelation, we are 
likely to have a more robust model.  

As mentioned earlier, the criteria for selecting an appropriate model primarily 
rests on the theory behind it and the strength of the collected data. Many a time, 
we observe certain relationship between two variables. Such relationship 
however may be superficial or spurious. Let us take an example. At a traffic light, 
cars stop when the signal is red. It does not mean that cars cannot move when 
there is red light in front of them. It also does not mean that traffic light has some 
damaging effect on moving cars. The reason is observance of traffic rules. Unless 
we look into the traffic rules and go by observation only, our reasoning will be 
wrong. The dependent variable and the independent variable both may be 
affected by another variable. In such cases the relationship is confounded.  

You should note one more issue regarding selection of econometric models. 
Different test criteria may suggest different models. For example, economic logi 
suggests that there could two possible econometric models (say, model A and 
model B) for a particular issue. You may come across a situation such that 𝑅തଶ 
test suggests model A and AIC criterion suggest model B. In such situations you 
should carry out a number of tests and then only chose the best model.  

Adjusted R-squared, Mallows 𝐶௣, p-values, etc. may point to different regression 
equations without much clarity to the econometrician. Thus, we conclude that 
none of the methods for model selection listed above are adequate by itself. 
There is no substitute to theoretical understanding of the related literature, 
accurately collected data, practical understanding of the problem, and common 
sense while specifying an econometric model. We will discuss further on the 
model selection criteria in the course BECC 142: Applied Econometrics.  

Check Your Progress 1 

1) Explain why 𝑅തଶ  is a better criterion than R2 in model specification. 

.......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

....................................................................................................................... 

 ....................................................................................................................... 
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2) Explain how the AIC and BIC criteria are applied in selection of 
econometric models.  

 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 ....................................................................................................................... 

3) What precaution you should take while selecting an econometric model?  
 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 .......................................................................................................................

 ....................................................................................................................... 

14.5 LET US SUM UP 
Selection of an appropriate econometric model is a difficult task. We have to take 
into account the economic theory and logic behind the econometric model. There 
could be many competing models for a particular issue.  

There a certain criteria on the basis of which the best econometric model is 
selected. These criteria could be 𝑅തଶ , AIC, BIC, and Mallow’s Cp. We have 
described the formulae for these test criteria in the Unit.  

14.6 ANSWERS TO CHECK YOUR PROGRESS 
EXERCISES 

Check Your Progress 1 

1) In Sub-Section 14.3.1 we have compared between R2 and 𝑅തଶ. The 𝑅തଶ takes 
into account the degrees of freedom.  

2) You should describe the test statistics used in AIC and BIC criteria (see 
Section 14.3). The model with lowest value of test statistics is preferred.   

3) Go through Section 14.4 and answer.  
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Table A1: Normal Area Table 

Z 0.00  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09  

0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359 

0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753 

0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141 

0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517 

0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879 

0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224 

0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549 

0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852 

0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133 

0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389 

1.0 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621 

1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830 

1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015 

1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177 

1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319 

1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441 

1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545 

1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633 

1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706 

1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767 

2.0 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817 

2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857 

2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890 

2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916 

2.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936 

2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952 

2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964 

2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974 

2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981 

2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986 

3.0 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990 
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Table A2: Critical Values of Chi-squared Distribution 

 

df\area 0.1 0.05 0.025 0.01 0.005 

1 2.706 3.841 5.024 6.635 7.879 

2 4.605 5.991 7.378 9.210 10.597 

3 6.251 7.815 9.348 11.345 12.838 

4 7.779 9.488 11.143 13.277 14.860 

5 9.236 11.071 12.833 15.086 16.750 

  

6 10.645 12.592 14.449 16.812 18.548 

7 12.017 14.067 16.013 18.475 20.278 

8 13.362 15.507 17.535 20.090 21.955 

9 14.684 16.919 19.023 21.666 23.589 

10 15.987 18.307 20.483 23.209 25.188 

  

11 17.275 19.675 21.920 24.725 26.757 

12 18.549 21.026 23.337 26.217 28.300 

13 19.812 22.362 24.736 27.688 29.819 

14 21.064 23.685 26.119 29.141 31.319 

15 22.307 24.996 27.488 30.578 32.801 

  

16 23.542 26.296 28.845 32.000 34.267 

17 24.769 27.587 30.191 33.409 35.718 

18 25.989 28.869 31.526 34.805 37.156 

19 27.204 30.144 32.852 36.191 38.582 

20 28.412 31.410 34.170 37.566 39.997 

21 29.615 32.671 35.479 38.932 41.401 

22 30.813 33.924 36.781 40.289 42.796 

23 32.007 35.172 38.076 41.638 44.181 

24 33.196 36.415 39.364 42.980 45.559 

25 34.382 37.652 40.646 44.314 46.928 

26 35.563 38.885 41.923 45.642 48.290 

27 36.741 40.113 43.195 46.963 49.645 

28 37.916 41.337 44.461 48.278 50.993 

29 39.087 42.557 45.722 49.588 52.336 

30 40.256 43.773 46.979 50.892 53.672 
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Table A3: Critical Values of t Distribution 

 

Df\p 0.25 0.10 0.05 0.025 0.01 0.005 

1 1.0000 3.0777 6.3138 12.7062 31.8205 63.6567 

2 0.8165 1.8856 2.9200 4.3027 6.9646 9.9248 

3 0.7649 1.6377 2.3534 3.1825 4.5407 5.8409 

4 0.7407 1.5332 2.1318 2.7765 3.7470 4.6041 

5 0.7267 1.4759 2.0150 2.5706 3.3649 4.0321 

6 0.7176 1.4398 1.9432 2.4469 3.1427 3.7074 

7 0.7111 1.4149 1.8946 2.3646 2.9980 3.4995 

8 0.7064 1.3968 1.8595 2.3060 2.8965 3.3554 

9 0.7027 1.3830 1.8331 2.2622 2.8214 3.2498 

10 0.6998 1.3722 1.8125 2.2281 2.7638 3.1693 

11 0.6974 1.3634 1.7959 2.2010 2.7181 3.1058 

12 0.6955 1.3562 1.7823 2.1788 2.6810 3.0545 

13 0.6938 1.3502 1.7709 2.1604 2.6503 3.0123 

14 0.6924 1.3450 1.7613 2.1448 2.6245 2.9768 

15 0.6912 1.3406 1.7531 2.1315 2.6025 2.9467 

16 0.6901 1.3368 1.7459 2.1199 2.5835 2.9208 

17 0.6892 1.3334 1.7396 2.1098 2.5669 2.8982 

18 0.6884 1.3304 1.7341 2.1009 2.5524 2.8784 

19 0.6876 1.3277 1.7291 2.0930 2.5395 2.8609 

20 0.6870 1.3253 1.7247 2.0860 2.5280 2.8453 

20 0.6870 1.3253 1.7247 2.0860 2.5280 2.8453 

21 0.6864 1.3232 1.7207 2.0796 2.5177 2.8314 

22 0.6858 1.3212 1.7171 2.0739 2.5083 2.8188 

23 0.6853 1.3195 1.7139 2.0687 2.4999 2.8073 

24 0.6849 1.3178 1.7109 2.0639 2.4922 2.7969 

25 0.6844 1.3163 1.7081 2.0595 2.4851 2.7874 

26 0.6840 1.3150 1.7056 2.0555 2.4786 2.7787 

27 0.6837 1.3137 1.7033 2.0518 2.4727 2.7707 

28 0.6834 1.3125 1.7011 2.0484 2.4671 2.7633 

29 0.6830 1.3114 1.6991 2.0452 2.4620 2.7564 

30 0.6828 1.3104 1.6973 2.0423 2.4573 2.7500 

inf 0.6745 1.2816 1.6449 1.9600 2.3264 2.5758 
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Table A4: Critical Values of F Distribution 

(5% level of significance) 

 

df2/df1 1 2 3 4 5 6 7 8 9 10 

1 161.448 199.500 215.707 224.583 230.162 233.986 236.768 238.883 240.543 241.882 

2 18.513 19.000 19.164 19.247 19.296 19.330 19.353 19.371 19.385 19.396 

3 10.128 9.552 9.277 9.117 9.014 8.941 8.887 8.845 8.812 8.786 

4 7.709 6.944 6.591 6.388 6.256 6.163 6.094 6.041 5.999 5.964 

5 6.608 5.786 5.410 5.192 5.050 4.950 4.876 4.818 4.773 4.735 

6 5.987 5.143 4.757 4.534 4.387 4.284 4.207 4.147 4.099 4.060 

7 5.591 4.737 4.347 4.120 3.972 3.866 3.787 3.726 3.677 3.637 

8 5.318 4.459 4.066 3.838 3.688 3.581 3.501 3.438 3.388 3.347 

9 5.117 4.257 3.863 3.633 3.482 3.374 3.293 3.230 3.179 3.137 

10 4.965 4.103 3.708 3.478 3.326 3.217 3.136 3.072 3.020 2.978 

11 4.844 3.982 3.587 3.357 3.204 3.095 3.012 2.948 2.896 2.854 

12 4.747 3.885 3.490 3.259 3.106 2.996 2.913 2.849 2.796 2.753 

13 4.667 3.806 3.411 3.179 3.025 2.915 2.832 2.767 2.714 2.671 

14 4.600 3.739 3.344 3.112 2.958 2.848 2.764 2.699 2.646 2.602 

15 4.543 3.682 3.287 3.056 2.901 2.791 2.707 2.641 2.588 2.544 

16 4.494 3.634 3.239 3.007 2.852 2.741 2.657 2.591 2.538 2.494 

17 4.451 3.592 3.197 2.965 2.810 2.699 2.614 2.548 2.494 2.450 

18 4.414 3.555 3.160 2.928 2.773 2.661 2.577 2.510 2.456 2.412 

19 4.381 3.522 3.127 2.895 2.740 2.628 2.544 2.477 2.423 2.378 

20 4.351 3.493 3.098 2.866 2.711 2.599 2.514 2.447 2.393 2.348 

21 4.325 3.467 3.073 2.840 2.685 2.573 2.488 2.421 2.366 2.321 

22 4.301 3.443 3.049 2.817 2.661 2.549 2.464 2.397 2.342 2.297 

23 4.279 3.422 3.028 2.796 2.640 2.528 2.442 2.375 2.320 2.275 

24 4.260 3.403 3.009 2.776 2.621 2.508 2.423 2.355 2.300 2.255 

25 4.242 3.385 2.991 2.759 2.603 2.490 2.405 2.337 2.282 2.237 

26 4.225 3.369 2.975 2.743 2.587 2.474 2.388 2.321 2.266 2.220 

27 4.210 3.354 2.960 2.728 2.572 2.459 2.373 2.305 2.250 2.204 

28 4.196 3.340 2.947 2.714 2.558 2.445 2.359 2.291 2.236 2.190 

29 4.183 3.328 2.934 2.701 2.545 2.432 2.346 2.278 2.223 2.177 

30 4.171 3.316 2.922 2.690 2.534 2.421 2.334 2.266 2.211 2.165 

40 4.085 3.232 2.839 2.606 2.450 2.336 2.249 2.180 2.124 2.077 

60 4.001 3.150 2.758 2.525 2.368 2.254 2.167 2.097 2.040 1.993 

120 3.920 3.072 2.680 2.447 2.290 2.175 2.087 2.016 1.959 1.911 

inf 3.842 2.996 2.605 2.372 2.214 2.099 2.010 1.938 1.880 1.831 
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Table A4: Critical Values of F Distribution (Contd.) 

(5% level of significance) 

 

df2/df1 12 15 20 24 30 40 60 120 INF  

1 243.906 245.950 248.013 249.052 250.095 251.143 252.196 253.253 254.314 

2 19.413 19.429 19.446 19.454 19.462 19.471 19.479 19.487 19.496 

3 8.745 8.703 8.660 8.639 8.617 8.594 8.572 8.549 8.526 

4 5.912 5.858 5.803 5.774 5.746 5.717 5.688 5.658 5.628 

5 4.678 4.619 4.558 4.527 4.496 4.464 4.431 4.399 4.365 

6 4.000 3.938 3.874 3.842 3.808 3.774 3.740 3.705 3.669 

7 3.575 3.511 3.445 3.411 3.376 3.340 3.304 3.267 3.230 

8 3.284 3.218 3.150 3.115 3.079 3.043 3.005 2.967 2.928 

9 3.073 3.006 2.937 2.901 2.864 2.826 2.787 2.748 2.707 

10 2.913 2.845 2.774 2.737 2.700 2.661 2.621 2.580 2.538 

11 2.788 2.719 2.646 2.609 2.571 2.531 2.490 2.448 2.405 

12 2.687 2.617 2.544 2.506 2.466 2.426 2.384 2.341 2.296 

13 2.604 2.533 2.459 2.420 2.380 2.339 2.297 2.252 2.206 

14 2.534 2.463 2.388 2.349 2.308 2.266 2.223 2.178 2.131 

15 2.475 2.403 2.328 2.288 2.247 2.204 2.160 2.114 2.066 

16 2.425 2.352 2.276 2.235 2.194 2.151 2.106 2.059 2.010 

17 2.381 2.308 2.230 2.190 2.148 2.104 2.058 2.011 1.960 

18 2.342 2.269 2.191 2.150 2.107 2.063 2.017 1.968 1.917 

19 2.308 2.234 2.156 2.114 2.071 2.026 1.980 1.930 1.878 

20 2.278 2.203 2.124 2.083 2.039 1.994 1.946 1.896 1.843 

21 2.250 2.176 2.096 2.054 2.010 1.965 1.917 1.866 1.812 

22 2.226 2.151 2.071 2.028 1.984 1.938 1.889 1.838 1.783 

23 2.204 2.128 2.048 2.005 1.961 1.914 1.865 1.813 1.757 

24 2.183 2.108 2.027 1.984 1.939 1.892 1.842 1.790 1.733 

25 2.165 2.089 2.008 1.964 1.919 1.872 1.822 1.768 1.711 

26 2.148 2.072 1.990 1.946 1.901 1.853 1.803 1.749 1.691 

27 2.132 2.056 1.974 1.930 1.884 1.836 1.785 1.731 1.672 

28 2.118 2.041 1.959 1.915 1.869 1.820 1.769 1.714 1.654 

29 2.105 2.028 1.945 1.901 1.854 1.806 1.754 1.698 1.638 

30 2.092 2.015 1.932 1.887 1.841 1.792 1.740 1.684 1.622 

40 2.004 1.925 1.839 1.793 1.744 1.693 1.637 1.577 1.509 

60 1.917 1.836 1.748 1.700 1.649 1.594 1.534 1.467 1.389 

120 1.834 1.751 1.659 1.608 1.554 1.495 1.429 1.352 1.254 

inf 1.752 1.666 1.571 1.517 1.459 1.394 1.318 1.221 1.000 
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Table A4: Critical Values of F Distribution (contd.) 

(1% level of significance) 

df2/df1 1 2 3 4 5 6 7 8 9 10 

1 4052.181 4999.500 5403.352 5624.583 5763.650 5858.986 5928.356 5981.070 6022.473 6055.847 

2 98.503 99.000 99.166 99.249 99.299 99.333 99.356 99.374 99.388 99.399 

3 34.116 30.817 29.457 28.710 28.237 27.911 27.672 27.489 27.345 27.229 

4 21.198 18.000 16.694 15.977 15.522 15.207 14.976 14.799 14.659 14.546 

5 16.258 13.274 12.060 11.392 10.967 10.672 10.456 10.289 10.158 10.051 

6 13.745 10.925 9.780 9.148 8.746 8.466 8.260 8.102 7.976 7.874 

7 12.246 9.547 8.451 7.847 7.460 7.191 6.993 6.840 6.719 6.620 

8 11.259 8.649 7.591 7.006 6.632 6.371 6.178 6.029 5.911 5.814 

9 10.561 8.022 6.992 6.422 6.057 5.802 5.613 5.467 5.351 5.257 

10 10.044 7.559 6.552 5.994 5.636 5.386 5.200 5.057 4.942 4.849 

11 9.646 7.206 6.217 5.668 5.316 5.069 4.886 4.744 4.632 4.539 

12 9.330 6.927 5.953 5.412 5.064 4.821 4.640 4.499 4.388 4.296 

13 9.074 6.701 5.739 5.205 4.862 4.620 4.441 4.302 4.191 4.100 

14 8.862 6.515 5.564 5.035 4.695 4.456 4.278 4.140 4.030 3.939 

15 8.683 6.359 5.417 4.893 4.556 4.318 4.142 4.004 3.895 3.805 

16 8.531 6.226 5.292 4.773 4.437 4.202 4.026 3.890 3.780 3.691 

17 8.400 6.112 5.185 4.669 4.336 4.102 3.927 3.791 3.682 3.593 

18 8.285 6.013 5.092 4.579 4.248 4.015 3.841 3.705 3.597 3.508 

19 8.185 5.926 5.010 4.500 4.171 3.939 3.765 3.631 3.523 3.434 

20 8.096 5.849 4.938 4.431 4.103 3.871 3.699 3.564 3.457 3.368 

21 8.017 5.780 4.874 4.369 4.042 3.812 3.640 3.506 3.398 3.310 

22 7.945 5.719 4.817 4.313 3.988 3.758 3.587 3.453 3.346 3.258 

23 7.881 5.664 4.765 4.264 3.939 3.710 3.539 3.406 3.299 3.211 

24 7.823 5.614 4.718 4.218 3.895 3.667 3.496 3.363 3.256 3.168 

25 7.770 5.568 4.675 4.177 3.855 3.627 3.457 3.324 3.217 3.129 

26 7.721 5.526 4.637 4.140 3.818 3.591 3.421 3.288 3.182 3.094 

27 7.677 5.488 4.601 4.106 3.785 3.558 3.388 3.256 3.149 3.062 

28 7.636 5.453 4.568 4.074 3.754 3.528 3.358 3.226 3.120 3.032 

29 7.598 5.420 4.538 4.045 3.725 3.499 3.330 3.198 3.092 3.005 

30 7.562 5.390 4.510 4.018 3.699 3.473 3.304 3.173 3.067 2.979 

40 7.314 5.179 4.313 3.828 3.514 3.291 3.124 2.993 2.888 2.801 

60 7.077 4.977 4.126 3.649 3.339 3.119 2.953 2.823 2.718 2.632 

120 6.851 4.787 3.949 3.480 3.174 2.956 2.792 2.663 2.559 2.472 

inf 6.635 4.605 3.782 3.319 3.017 2.802 2.639 2.511 2.407 2.321 
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Table A4: Critical Values of F Distribution (contd.) 

(1% level of significance) 

 

df2/df1 12 15 20 24 30 40 60 120 INF 

1 6106.321 6157.285 6208.730 6234.631 6260.649 6286.782 6313.030 6339.391 6365.864 

2 99.416 99.433 99.449 99.458 99.466 99.474 99.482 99.491 99.499 

3 27.052 26.872 26.690 26.598 26.505 26.411 26.316 26.221 26.125 

4 14.374 14.198 14.020 13.929 13.838 13.745 13.652 13.558 13.463 

5 9.888 9.722 9.553 9.466 9.379 9.291 9.202 9.112 9.020 

6 7.718 7.559 7.396 7.313 7.229 7.143 7.057 6.969 6.880 

7 6.469 6.314 6.155 6.074 5.992 5.908 5.824 5.737 5.650 

8 5.667 5.515 5.359 5.279 5.198 5.116 5.032 4.946 4.859 

9 5.111 4.962 4.808 4.729 4.649 4.567 4.483 4.398 4.311 

10 4.706 4.558 4.405 4.327 4.247 4.165 4.082 3.996 3.909 

11 4.397 4.251 4.099 4.021 3.941 3.860 3.776 3.690 3.602 

12 4.155 4.010 3.858 3.780 3.701 3.619 3.535 3.449 3.361 

13 3.960 3.815 3.665 3.587 3.507 3.425 3.341 3.255 3.165 

14 3.800 3.656 3.505 3.427 3.348 3.266 3.181 3.094 3.004 

15 3.666 3.522 3.372 3.294 3.214 3.132 3.047 2.959 2.868 

16 3.553 3.409 3.259 3.181 3.101 3.018 2.933 2.845 2.753 

17 3.455 3.312 3.162 3.084 3.003 2.920 2.835 2.746 2.653 

18 3.371 3.227 3.077 2.999 2.919 2.835 2.749 2.660 2.566 

19 3.297 3.153 3.003 2.925 2.844 2.761 2.674 2.584 2.489 

20 3.231 3.088 2.938 2.859 2.778 2.695 2.608 2.517 2.421 

21 3.173 3.030 2.880 2.801 2.720 2.636 2.548 2.457 2.360 

22 3.121 2.978 2.827 2.749 2.667 2.583 2.495 2.403 2.305 

23 3.074 2.931 2.781 2.702 2.620 2.535 2.447 2.354 2.256 

24 3.032 2.889 2.738 2.659 2.577 2.492 2.403 2.310 2.211 

25 2.993 2.850 2.699 2.620 2.538 2.453 2.364 2.270 2.169 

26 2.958 2.815 2.664 2.585 2.503 2.417 2.327 2.233 2.131 

27 2.926 2.783 2.632 2.552 2.470 2.384 2.294 2.198 2.097 

28 2.896 2.753 2.602 2.522 2.440 2.354 2.263 2.167 2.064 

29 2.868 2.726 2.574 2.495 2.412 2.325 2.234 2.138 2.034 

30 2.843 2.700 2.549 2.469 2.386 2.299 2.208 2.111 2.006 

40 2.665 2.522 2.369 2.288 2.203 2.114 2.019 1.917 1.805 

60 2.496 2.352 2.198 2.115 2.028 1.936 1.836 1.726 1.601 

120 2.336 2.192 2.035 1.950 1.860 1.763 1.656 1.533 1.381 

inf 2.185 2.039 1.878 1.791 1.696 1.592 1.473 1.325 1.000 
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Table A5: Durbin-Watson d-statistic    Level of Significance = 0.05  k= no. of regressors  

 
    ________________________________________________________________________________________________ 



GLOSSARY 

Association : It refers to the connection or relationship between 
variables 

Alternative 
Hypothesis 

: It is the hypothesis contrary to the null hypothesis. 
Null hypothesis and alternative hypothesis are 
mutually exclusive.  

Alternative 
Hypothesis 

: In hypothesis testing, alternative hypothesis states a 
condition that is opposite to the null hypothesis. It is 
expressed as 𝐻ଵ: 𝛽ଶ ≠ 0, i.e., the slope coefficient is 
different from zero. It could be positive or negative.  

Analysis of Variance 
(ANOVA) 

: This is a technique that breaks up the total 
variability of data into two parts one statistical and 
the other random. 

ANCOVA Model : This is a model which involves both a quantitative 
and a dummy variable. The form of such a model 
will be like: 𝑌௜ = 𝛽ଵ + 𝛽ଶ𝐷 + 𝛽ଷ𝑋௜ + 𝑢௜.  

ANOVA Model  : This is a regression model containing only a dummy 
explanatory variable. The functional form of this is 
like: 𝑌௜ = 𝛽ଵ + 𝛽ଶ𝐷௜ + 𝜇௜.  

Autocorrelation : The Classical Linear Regression Model assumes 
that the random error terms are not related to each 
other. In other words, there exists no correlation 
between the error terms associated with each 
observation. This assumption is referred as the 
assumption of no autocorrelation. 

Base or Benchmark 
Category 

: The dummy variable which takes the value 0 is 
referred to as the ‘base or benchmark category’.  

Continuous Random 
Variable 

: It refers to a random variable that can take infinite 
number of values in an interval are called 
continuous random variables. 

Cochrane-Orcutt 
Procedure 

: This is a transformation procedure suggested by 
Cochrane-Orcutt. It is helpful in estimating the 
value of the correlation coefficient between the 
error terms. The transformation, enables the 
application of the OLS method, and yields estimates 
of parameters which enjoy the BLUE property. 
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Confidence Interval 
Approach 

: In order to test the population parameter, a 
confidence interval can be constructed about the true 
but unknown mean. If the population parameter lies 
within the confidence interval, the null hypothesis is 
accepted; otherwise it is rejected. 

Classical Linear 
Regression Model 

: It refers to a linear regression model that establishes 
a linear relationship between the variables, based on 
certain specified assumptions.  

Chow Test : This test visualizes the presence of structural change 
that may result in differences in the intercept or the 
slope coefficient or both. This in referred to as 
parameter instability. For examining this we perform 
Chow Test 

Causal Relationship : The relationship between the variables where one 
can figure  out the cause and the effect between 
the two variables. 

Confidence Interval : It is the range of values that determines the 
probability that the value of the parameter lies 
within the interval. 

Chi-square 
Distribution 

: Chi-square distribution is the distribution which is 
the sum of squares of k independent standard normal 
random variables. 

Composite or Two-
Sided Hypothesis 

: In hypothesis testing, a composite hypothesis covers 
a set of values that are not equal to the given or 
stated null hypothesis. 

Confidence Interval : It refers to the probability that a population 
parameter falls within the set of critical values taken 
from the Table. 

Discrete Random 
Variable 

: It refers to random variables that can assume only 
countable values. 

Distribution Function : Distribution function of a real valued random 
variable gives a value at any given sample point in 
the sample space. 

Deterministic 
Component 

: It represents the systematic component of the 
regression equation. It is the expected value of the 
dependent variable for given values of the 
explanatory variable. 



206 
 

Econometric Model : These are statistical models specifying relationship 
between relationships between various economic 
quantities. 

Differential Intercept 
Coefficient 

: In the ANOVA model 𝑌௜ = 𝛽ଵ + 𝛽ଶ𝐷௜ + 𝜇௜ , since 
there is no continuous regression line involved, the 
slope coefficient 𝛽ଶ actually measures by how much 
the value of the intercept term differs between the 
two categories (e.g. male/female) under 
consideration. For this reason, 𝛽ଶ  is more 
appropriately called as the ‘differential intercept 
coefficient’. 

Dummy Variable 
Trap 

: Response to a dummy variable like gender 
(male/female), caste (general/SC-ST/OBC), etc. are 
called as categories. Depending on the ‘number’ of 
such categories, we must consider including the 
number of dummy variables in the regression 
carefully. Usually, this should be ‘one less than the 
number of categories’. Failing to do this will land us 
in a situation called as the ‘dummy variable trap’. 
This means we will face a situation of 
multicollinearity with no unique estimates, or 
efficient estimates, of the parameters. The general 
rule for introducing the number of dummies is that, 
if there are m attributes or categories, the number of 
dummy variables introduced should be ‘m – 1’.  

Dummy Variables  : There are variables which are qualitative in nature. 
Also known as dummy variables, these variables are 
referred differently like: indicator variables, binary 
variables, categorical variables, dichotomous 
variables. 

Durbin h-statistic  

 

: The Durbin- Watson technique fails to operate when 
the regression model involves the lagged value of 
dependent variable as one of the explanatory 
variables. In such models, the h – statistic, also 
suggested by Durbin, is useful to identify the 
presence of autocorrelation in the regression model.  

Durbin-Watson Test 
(d-statistic) 
 

: The test helps detect a first order autocorrelation. 
The test statistic employed is:  

𝑑 =
෌ (𝑒௧ − 𝑒௧ିଵ)ଶ௡

௧ୀଶ

෌ 𝑒௧
ଶ௡

௧ୀଵ
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Estimator : A method of arriving at an estimate of a parameter. 

Estimation of 
Parameters 

: This process deals with estimating the values of 
parameters based on measured empirical data that 
has a random component. 

Estimation : The process of estimating any population parameter. 

F-Distribution : It is a right-skewed distribution used for analysis of 
variance. F-statistic is used for comparing statistical 
models and to identify the model that best fits the 
population. 

Forecasting : Forecasting is a technique that predicts the future 
trends by using historical data. The method of 
forecasting is generally used to extrapolate the 
parameters such as GDP or unemployment. 

Goodness of Fit : An overall goodness of fit that tells us how well the 
estimated regression line fits the actual Y values. 
Such a measure is known as the coefficient of 
determination, denoted by R2. It is the ratio of 
explained sum of squares (ESS) to total sum of 
squares (TSS). 

Glejser Test 
 

: The Glejser Test is similar to the Park Test. 
Obtaining ei from the original model, Glejser 
suggests regressing the absolute values of ei, i.e., 

ie on the X variable expected to be closely 

associated with the heteroscedastic variance 𝜎௜
ଶ. 

Goldfeld-Quandt Test : In this method of testing for heteroscedasticity, we 
first arrange the observations in increasing order of 
Xi variable. Next we exclude C observations in the 
middle of dataset. Thus, (n – C)/2 observations in 
the first part and (n – C)/2 observations in the last 
part constitute two groups. We then proceed to 
obtain the respective residual sum of squares RSS1 
and RSS2. The RSS1 represents the RSS for the 
regression corresponding to the smaller Xi values 
and RSS2 to that of the larger Xi values. We conduct 
F-test to check for the presence of 
heteroscedasticity. 

Gauss Markov 
Theorem 

: Under the assumptions of classical linear regression 
model, the least squares estimators are Best Linear 
Unbiased Estimate (BLUE). This means, in the class 
of all unbiased linear estimators, the OLS estimates 
have the minimum or least variance. 
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Hypothesis : It is a tentative statement that we propose to test. It 
is based on the limited evidence. Hypothesis is 
formulated on the basis of economic theory or some 
logic.  

Homoscedasticity : A crucial assumption of the Classical Linear 
Regression Model (CLRM) in that the error term ui 
in the population regression function (PRF) is 
homoscedastic, i.e., they have the same variance 2 . 
Such an assumption is referred to as the assumption 
of homoscedasticity.  

Heteroscedasticity : If the variance of ui is 𝜎௜
ଶ, i.e., it varies from one 

observation to another, then the situation is referred 
to as a case of heteroscedasticity. 

Interactive Dummy : This is a variable like DX in which there is one 
dummy variable and one quantitative variable. It is 
considered in the multiplicative form to enable us to 
see whether the slope coefficients of two groups are 
same or different. The functional form of this type 
of regression is 𝑌௜ = 𝛽ଵ + 𝛽ଶ𝐷௜ + 𝛽ଷ𝑋௜ +
𝛽ସ(𝐷௜𝑋௜) + 𝑢௜. 

Jarque-Bera (J-B) 
Test  

: This is an asymptotic or large sample test based on 
OLS residuals in order to test the normality of the 
error term. Coefficient of skewness: S, i.e., the 
asymmetry of PDF. Measure of tallness or height of 
population distribution function: K  

For normal distribution S = 0, K = 3  

Jarque and Bera constructed J-Statistics given by  

 𝐽஻ = ௡
଺

ቂ𝑆ଶ + (௄ିଷ)మ

ସ
ቃ 

Linear Regression : In linear regression models the functional form of 
the relationship between the variables is linear. 

Mathematical Model : A description of system using mathematical 
concepts 

Multicollinearity : The classical linear regression model assumes that 
there is no perfect multicollinearity, implying no 
exact linear relationship among the explanatory 
variables, included in multiple regression models. 
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MWD test : This is the test for the selection of the appropriate 
functional form for regression as proposed by 
Mackinnon, White and Davidson. The test is hence 
known as the MWD Test.  

Null Hypothesis : The null hypothesis (also called Strawman 
hypothesis) states that there is no relationship 
between the variables. The coefficients are 
deliberately chosen as zero to find out whether Y is 
related to X at all. If X really belongs in the model, 
we would fully expect to reject the zero-null 
hypothesis H0 in favour of the alternatives 
hypothesis H1 that it is not zero. 

Near or imperfect 
multicollinearity 

: The case when two or more explanatory variables 
are not exactly linear this reinforces the fact that 
collinearity can be high but not perfect.  

“High collinearity” refers to the case of “near” or 
imperfect” or high multicollinearity. 

Null Hypothesis : It is the hypothesis that there is no significant 
difference between specified population, the 
observed difference is mainly due to sampling or 
experimental error. 

Normal Distribution : It is a very common probability distribution. The 
curve is bell-shaped and the area under the normal 
curve is 1. 

Ordinary Least 
Squares Method 

: Ordinary Least Squares (OLS) is a method for 
estimation of the unknown parameters in a linear 
regression model. The OLS method minimizes the 
sum of the squares of the errors.  

Parameters : It is a measurement of any variable. A numerical 
quantity that characterizes a given population 

Prediction  : A regression model explains the variation in the 
dependent variable on the basis of explanatory 
variables. Given the values of the explanatory 
variables, we predict the value of the dependent 
variable. The predicted value is different from the 
actual value.  

Parameter : A quantity or statistical measure for a given 
population that is fixed. The mean and the variance 
of a population are population parameters. 
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p- value : It is the lowest level of significance when the null 
hypothesis can be rejected. 

Power of Test : The power of any test of statistical significance is 
defined as the probability that it will reject a false 
null hypothesis. The value of the power of test is 
given by (1  ). 

Population 
Regression Function 
(PRF) 

: A population regression function hypothesizes a 
theoretical relationship between a dependent 
variable and a set of independent or explanatory 
variables. It is a linear function. The function 
defines how conditional expectation of a variable Y 
responds to the changes in independent variable X. 

Perfect 
multicollinearity 

 

: The case of perfect multicollinearity mainly reflects 
the situation when the explanatory variables and 
perfectly correlated with each other implying the 
coefficient of correlation between the explanatory 
variables is 1. 

Park-Test  

 

: If there is heteroscedasticity in a dataset, the 
heteroscedastic variance 2

i  may be systematically 
related to one or more of the explanatory variables. 
In such cases, we can regress 2

i on one or more of 
such X- variables. Such an approach, adopted in the 
Park-test, helps detect the presence of 
heteroscedasticity. 

Random Variable : A variable which takes on values which are 
numerical outcomes of a random phenomenon. 

Regression : A regression analysis is concerned with the study of 
the relationship the explained or dependent variable 
and the independent or explanatory variables. 

Residual Term : The actual value of Y is obtained by adding the 
residual term to the estimated value of Y. The 
residual term is the estimated value of the random 
error term of the population regression function. 

Ridge Regression 

 

: The ridge regressions are the method of resolving 
the problem of multicollinearity. In the ridge 
regression, the first step is to standardize the 
variables both dependent and independent by 
subtracting the respective means and dividing by 
their standard deviations. 
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Statistical Inference : It refers to the process of deducing properties of 
underlying probability distribution of the parameters 
by analysing data. 

Standard Normal 
Distribution 

: It refers to a normal distribution with mean 0 and 
standard deviation 1. 

Statistical Inference : It refers to the method of drawing inference about 
the population parameter on the basis of random 
sampling. 

Statistical 
Hypothesis: 

: It is an assumption about a population parameter. 
This assumption may or may not be true. This 
statistical hypothesis is either accepted or rejected 
on the basis of hypothesis testing. 

Stochastic Error  : The error term represents the influence of those 
variables that are not included in the regression 
model. It is evident that even if we try to include all 
the factors that influence the dependent variable, 
there exists some intrinsic randomness between the 
two variables. 

Subsidiary or 
Auxiliary Regressions  

 

: When one explanatory variables X is regressed on 
each of the remaining X variable and the 
corresponding 2R is computed. Each of these 
regressions is referred as subsidiary or auxiliary 
regression.  

t- Distribution : It refers to a continuous probability distribution that 
is obtained while estimating mean of normally 
distributed population where sample size is small 
and population standard deviation is unknown. 

Test of significance 
Approach 

: The method of inference used to either reject or 
accept the null hypothesis. This approach makes use 
of test statistic to make any statistical inference. 

Test Statistic : A test statistic is a standardized value that is 
computed from a sample during the hypothesis 
testing. On the basis of test statistics one can either 
reject or accept the null hypothesis. 

Type I Error: : In the statistical hypothesis testing, type I error is the 
incorrect rejection of true null hypothesis. The value 
is given by alpha level of significance.  
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Type II Error : The error that occurs when we accept a null 
hypothesis that is actually false. It is the probability 
of accepting the null hypothesis when it is false. 

Variance Inflation 
Factor (VIF) 

 

: 2R obtained variables auxiliary regression may not 
be completely realiable and is not reliable indicator 
of collinearity. In this method we modify the 
formula of var (𝑏ଶ) and (𝑏3), varௗ(𝑏ଶ) = ఙమ

∑௫మ೔
మ ൫ଵିோమ

మ൯
 

White’s General 
Heteroscedasticity 
Test  

 

: This is a method to test the presence of 
heteroscedasticity in a regression model. In this, the 
residuals obtained from original regression are 
squared and regressed on the original variables, their 
squared values and their cross-products. Additional 
powers of original X variables can be added.  
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